23. (E) (a) cobalt-60 $^{60}_{27}$Co (b) phosphorus-32 $^{32}_{15}$P (c) iron-59 $^{59}_{26}$Fe (d) radium-226 $^{226}_{88}$Ra

28. (E)
(a) The atomic number of Ra is 88 and equals the number of protons in the nucleus. The ion's charge is 2+ and, thus, there are two more protons than electrons: no. protons = no. electrons + 2 = 88; no. electrons = 88 – 2 = 86. The mass number (228) is the sum of the atomic number and the number of neutrons: 228 = 88 + no. neutrons; Hence, the number of neutrons = 228 – 88 = 140 neutrons.

(b) The mass of 16O is 15.9994 u. ratio = \(\frac{\text{mass of isotope}}{\text{mass of } ^{16}\text{O}} = \frac{228.030\text{ u}}{15.9994\text{ u}} = 14.2524 \)

44. (E) To determine the average atomic mass, we use the following expression:

average atomic mass = \(\sum (\text{isotopic mass} \times \text{fractional natural abundance}) \)

Each of the three percents given is converted to a fractional abundance by dividing it by 100.

Cr atomic mass = \((49.9461 \times 0.0435) + (51.9405 \times 0.8379) + (52.9407 \times 0.0950) + (53.9389 \times 0.0236) \)

= 2.17 u + 43.52 u + 5.03 u + 1.27 u = 51.99 u

If all digits are carried and then the answer is rounded at the end, the answer is 52.00 u.

48. (M) We use the expression for determining the weighted-average atomic mass, where \(x \) represents the fractional abundance of 10B and \((1-x) \) the fractional abundance of 11B

\[
10.811\text{ u} = (10.012937\text{ u} \times x) + [11.009305\text{ u} \times (1-x)] = 10.012937x + 11.009305 - 11.009305x
\]

\[
x = \frac{0.198}{0.996368} = 0.199
\]

\[
\therefore 19.9\% \text{ } ^{10}\text{B} \quad \text{and} \quad (100.0 - 19.9) = 80.1\% \text{ } ^{11}\text{B}
\]

55. (E)
(a) atoms of Fe = 15.8 mol Fe \times \(\frac{6.022 \times 10^{23} \text{ atoms Fe}}{1 \text{ mol Fe}} = 9.51 \times 10^{24} \text{ atoms Fe} \)

(b) atoms of Ag = 0.000467 mol Ag \times \(\frac{6.022 \times 10^{23} \text{ atoms Ag}}{1 \text{ mol Ag}} = 2.81 \times 10^{20} \text{ atoms Ag} \)

(c) atoms of Na = 8.5 \times 10$^{-11}$ mol Na \times \(\frac{6.022 \times 10^{23} \text{ atoms Na}}{1 \text{ mol Na}} = 5.1 \times 10^{13} \text{ atoms Na} \)

57. (E)
(a) moles of Zn = \(\frac{415.0 \text{ g Zn}}{65.39 \text{ g Zn}} \times \frac{1 \text{ mol Zn}}{6.022 \times 10^{23} \text{ atoms Zn}} \times \frac{6.022 \times 10^{23} \text{ atoms Zn}}{1 \text{ mol Zn}} = 6.347 \text{ mol Zn} \)

(b)
\[\text{# of Cr atoms} = \frac{147,400 \text{ g Cr}}{51.9961 \text{ g Cr}} \times \frac{1 \text{ mol Cr}}{6.022 \times 10^{23} \text{ atoms Cr}} \times \frac{6.022 \times 10^{23} \text{ atoms Cr}}{1 \text{ mol Cr}} = 1.707 \times 10^{27} \text{ atoms Cr} \]

(c)
\[\text{mass Au} = \frac{196.967 \text{ g Au}}{6.022 \times 10^{23} \text{ atoms Au}} \times \frac{1 \text{ mol Au}}{1 \text{ mol Au}} = 3.3 \times 10^{-10} \text{ g Au} \]

(d)
\[\text{mass of F atom} = \frac{18.9984 \text{ g F}}{1 \text{ mol F}} \times \frac{1 \text{ mol F}}{6.022 \times 10^{23} \text{ atoms F}} \times \frac{6.022 \times 10^{23} \text{ atoms F}}{1 \text{ atom F}} = 3.15 \times 10^{-20} \text{ g F} \]

For exactly 1 F atom, the number of sig figs in the answer is determined by the least precise number in the calculation, namely the mass of fluorine.

63.

We will use the average atomic mass of lead, 207.2 g/mol, to answer this question.

(a)
\[\frac{30 \mu \text{g Pb}}{1 \text{ dL}} \times \frac{1 \text{ mL}}{0.1 \text{ L}} \times \frac{1 \text{ g Pb}}{10^6 \mu \text{g Pb}} \times \frac{1 \text{ mol Pb}}{207.2 \text{ g}} = 1.45 \times 10^{-6} \text{ mol Pb/L} \]

(b)
\[\frac{1.45 \times 10^{-6} \text{ mol Pb}}{1 \text{ L}} \times \frac{1 \text{ mL}}{1000 \text{ mL}} \times \frac{6.022 \times 10^{23} \text{ atoms Pb}}{1 \text{ mol}} = 8.7 \times 10^{14} \text{ Pb atoms/mL} \]