Your task will be to code a simulation of image compression based on the approximate low rank structure of the set of image patches.

You will write functions

- \(C = \text{my_block_transform}(I, B); \)
- \(I = \text{my_block_untransform}(C, B, m, n); \)

The function \texttt{my_block_transform} takes as input an \(m \times n \) grayscale image \(I \), extracts all the distinct \(8 \times 8 \) blocks from the image using the matlab command \texttt{im2col}, and finds the representation of each block in the \((64 \times 64)\) orthogonal basis \(B \). The output \(C \) is a \(64 \times n\text{blocks} \) array which gives the coefficients for each block, where \(n\text{blocks} \) is the total number of blocks from the image.

The function \texttt{my_block_untransform} takes as input an array \(C \), a \(64 \times 64 \) basis \(B \), and output size parameters \(m \) and \(n \). It outputs an \(m \times n \) image \(I \) reconstructed from the coefficients in \(J \); you may use the function \texttt{col2im} if you find it convenient.

For example, suppose \(I \) is a \(24 \times 24 \) image. We can write \(I \) in block form:

\[
I = \begin{pmatrix}
I_1 & I_4 & I_7 \\
I_2 & I_5 & I_8 \\
I_3 & I_6 & I_9
\end{pmatrix},
\]

where \(I_k \) is a \(8 \times 8 \) matrix for \(k \in \{1, 2, \ldots, 9\} \). Using \texttt{im2col} on \(I \), we obtain

\[
J = (J_1 \ J_2 \ J_3 \ J_4 \ J_5 \ J_6 \ J_7 \ J_8 \ J_9) = \text{im2col}(I, [8 \ 8], \text{'distinct'}),
\]

where \(J_k \) is a \(64 \times 1 \) column vector. If we write each column \(J_k \) of \(J \) in the \(64 \times 64 \) basis \(B \), we get the matrix

\[
C = (C_1 \ C_2 \ C_3 \ C_4 \ C_5 \ C_6 \ C_7 \ C_8 \ C_9).
\]

You will then be provided with a training data set consisting of 200000 \(8 \times 8 \) grayscale patches of images. You will need to reshape these into
a 64 × 200000 matrix \(X \), and construct a basis \(B \) using the left singular vectors of \(X \). You will use these, and your code from this assignment more in the next homework assignment, but play with this \(B \) a bit. What is it like? how is it different from a basis of the form \texttt{orth(randn(64))}? how are the columns of \(J \) different with the two bases but the same image?