You will write a function

- \(x = \text{ge}_\text{precision}(A, b, \text{precision}) \);
- \(x = \text{ge}_\text{pp}_\text{precision}(A, b, \text{precision}) \);

The function \(\text{ge}_\text{precision} \) should use Gaussian elimination with no pivoting to solve the system of equations

\[
Ax = b.
\]

Each arithmetic operation should be done with simulated floating point arithmetic with precision bits using \(\text{my}_\text{plus} \) and \(\text{my}_\text{mult} \). To compute the division \(a/b \) with a specified precision you may “cheat” and use \(\text{my}_\text{mult}(a, 1/b, \text{precision}) \). The function \(\text{ge}_\text{pp}_\text{precision} \) should use partial pivoting. I will post code for Gaussian elimination and Gaussian elimination with partial pivoting that you may use as scaffolding; but remember to change every arithmetic operation to one with simulated precision. I suggest that you write helper functions

- \(xpy = \text{add}_\text{arrays}_\text{precision}(x, y, \text{precision}) \)
- \(ax = \text{scale}_\text{array}_\text{precision}(a, x, \text{precision}) \)

to clean up your code, but this is not necessary if you do not want.