On Partitioned Differential Quasifields

W. F. Keigher F. L. Pritchard
We begin by recalling that a differential ring R is called a (differential) quasi-field if every nonunit in R is nilpotent and every nonzero element has some derivative (perhaps of order zero) that is not nilpotent. Every differential field is a differential quasifield, and in characteristic zero, every differential quasifield is a differential field. Also, the subring of constants of a differential quasifield is a field.

We also recall that there are equivalent ways of describing a differential quasifield, which illustrate the parallel between fields and differential quasifields.
Recall that a ring R is **reduced** if R has no nonzero nilpotents, and R is **pointed** if every nonunit in R is nilpotent. Observe that a ring R is a field if and only if R is reduced and pointed. An element x in a differential ring R is called **differentially nilpotent** if all order derivatives of x (including order zero) are nilpotent in R. Note that any differentially nilpotent element is nilpotent. A differential ring R is called **quasireduced** if R has no nonzero differentially nilpotent elements. Hence a
differential ring R is a differential quasi-field if and only if R is quasireduced and pointed.

Example 1 Consider the differential ring $A = \mathbb{Z}\{y\}$ of differential polynomials with integer coefficients in the differential indeterminate y. In A, consider the differential ideal Q generated by $\{y' - 1, y^2, 2\}$, and let $R = A/Q$. If we let x denote the element $y + Q \in R$, then we see that $R = \{0, 1, x, 1 + x\}$ has characteristic 2, that $x^2 = 0$ and $x' = 1$. Hence R is quasireduced and
pointed, i.e., R is a differential quasifield.

Proposition 2 Suppose that E and F are differential quasifields, and that $f : E \rightarrow F$ is a differential ring homomorphism. Then if C_E denotes the subfield of constants in E, we have:

1. f is injective.

2. $x \in E$ is nilpotent if and only if $f(x) \in F$ is nilpotent.
3. $x \in E$ is constant if and only if $f(x) \in F$ is constant.

4. $x \in E$ is invertible if and only if $f(x) \in F$ is invertible.

5. $\{x_1, \ldots, x_n\} \subseteq E$ is linearly independent over C_E if and only if
$\{f(x_1), \ldots, f(x_n)\} \subseteq F$ is linearly independent over $f(C_E)$.

Theorem 3 Let E be a differential quasi-field of characteristic $p > 0$ with derivation δ and field of constants C_E. If
φ : E → E is any differential automorphism that leaves C_E fixed, then
φ = id_E, the identity on E.

Proof: Let $x \in E$, then $x^p \in C_E$ because $\delta(x^p) = px^{p-1}\delta(x) = 0$. If $\bar{x} = \phi(x) - x$, then \bar{x} is nilpotent, since

\[
\bar{x}^p = (\phi(x) - x)^p = \phi(x)^p - x^p = \phi(x^p) - x^p = x^p - x^p = 0.
\]
Now for any $m \in \mathbb{N}$, we have

$$(\delta^m(x))^p = (\delta^m(\phi(x) - x))^p$$

$$= (\delta^m(\phi(x)) - \delta^m(x))^p$$

$$= (\phi(\delta^m(x)) - \delta^m(x))^p$$

$$= (\phi(\delta^m(x))^p - (\delta^m(x))^p$$

$$= \phi((\delta^m(x))^p) - (\delta^m(x))^p$$

$$= (\delta^m(x))^p - (\delta^m(x))^p$$

$$= 0.$$

Thus for all $m \in \mathbb{N}$, $\delta^m(x)$ is nilpotent. But E is a quasifield, so it must be that $\bar{x} = 0$, that is, $\phi(x) = x$. \square
We recall that for any commutative ring R with identity, the \textbf{ring of Hurwitz series} over R, denoted by HR, is defined as follows. The elements of HR are sequences $(a_n) = (a_0, a_1, a_2, \ldots)$, where $a_n \in R$ for each $n \in \mathbb{N}$. Let $(a_n), (b_n) \in HR$. Addition in HR is defined termwise, i.e.,

$$(a_n) + (b_n) = (c_n), \quad \text{where} \quad c_n = a_n + b_n$$

for all $n \in \mathbb{N}$. The (Hurwitz) product of (a_n) and (b_n) is given by $(a_n) \cdot (b_n) = (c_n)$, where

$$c_n = \sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k}.$$
Moreover, HR is a differential ring with derivation $\partial_R : HR \to HR$ given by

$$\partial_R((a_0, a_1, a_2, \ldots)) = (a_1, a_2, a_3, \ldots).$$

We will often write ∂ in place of ∂_R. We will denote, for any $j \in \mathbb{N}$, the additive mapping $\pi_j : HR \to R$ defined by $\pi_j((a_n)) = a_j$.

Recall also that for any ring R of positive characteristic, R is a field if and only if the differential ring HR of Hurwitz series over R is a differential quasi-field.
Proposition 4 Let E be a differential quasifield of positive characteristic, N_E the nilradical of E and C_E the subfield of constants in E. Then there is a natural injective differential ring homomorphism $\eta_E : E \to Hk$ of E into the quasifield of Hurwitz series Hk, where $k = E/N_E$. Moreover, we have:

1. $x \in E$ is invertible in E if and only if $\eta_E(x) \in Hk$ is invertible in Hk.

2. $x \in E$ is nilpotent in E if and only if $\eta_E(x) \in Hk$ is nilpotent in Hk.
3. $x \in E$ is constant in E if and only if
 \[\eta_E(x) \in Hk \text{ is constant in } Hk. \]

4. Let $X = \{x_1, x_2, \ldots, x_n\} \subseteq E$. Then
 X is linearly independent over C_E if and only if
 \[\eta_E(X) \subseteq Hk \text{ is linearly independent over } \eta_E(C_E). \]

Here η_E is defined by
\[
\eta_E(x) = (x + N_E, \delta_E(x) + N_E, \delta_E^2(x) + N_E, \ldots).\]
Let E be a differential quasifield, C_E the subfield of constants of E, and N_E the nilradical of E. We say that E is **partitioned** if, as an additive group, $E = C_E \oplus N_E$, i.e., if for any $x \in E$, there exist unique $c_x \in C_E$ and $n_x \in N_E$ such that $x = c_x + n_x$.

Proposition 5 Let E be a differential quasifield with positive characteristic p and field of constants C_E. If C_E is perfect, then E is partitioned.

Proof: First recall that if $x \in E$, then $x^p \in C_E$. Now let N_E be the nilradical
of \(E \) and let

\[
k = E/N_E.
\]

Then \(k \) is an extension of \(C_E \), in the obvious way, that is,

\[
0 \rightarrow C_E \rightarrow E \rightarrow k.
\]

If

\[
x \in k \quad \text{then} \quad x^p \in C_E,
\]

and thus, since \(C_E \) is perfect,

\[
k = C_E.
\]

Thus \(N_E \) has codimension one, in \(E \), as a \(C_E \)-vector space and so

\[
E = C_E \oplus N_E,
\]
that is, E is partitioned.

\[\square\]

Proposition 6 Let (E, δ_E) be a differential quasifield of positive characteristic, C_E the subfield of constants of E, N_E the nilradical of E,

\[k = E/N_E\]

the reduced field of E and

\[\eta : E \rightarrow H_k\]

the canonical embedding. Then E is partitioned if and only if

\[\eta(C_E) = C_{H_k} \cong k.\]
Proof: Suppose first that E is partitioned, and let

$$c = (c_0, 0, \ldots, 0, \ldots) \in C_{Hk},$$

so that $c_0 \in k = E/N_E$. Hence there exists $x \in E$ such that

$$\tau(x) = c_0,$$

where $\tau : E \to k$ is the canonical surjection. Since E is partitioned, there exists $c_x \in C_E$ such that $x - c_x \in N_E$. Then

$$\eta(c_x) = (\tau(c_x), \tau(\delta_E(c_x)), \tau(\delta_E^2(c_x)), \ldots) = (c_0, 0, \ldots, 0, \ldots),$$
showing that $\eta(C_E) = C_{Hk} \cong k$.

Conversely, suppose that $\eta(C_E) = C_{Hk}$, so that for any $x \in E$, there exists $c_x \in C_E$ such that

$$\eta(c_x) = (x + N_E, 0 + N_E, 0 + N_E, \ldots) \in C_{Hk}.$$

It is clear that $c_x \in C_E$ satisfying $\eta(c_x) = (x + N_E, 0 + N_E, 0 + N_E, \ldots)$ is unique, since η is injective. Also, $x - c_x$ is nilpotent in E, since
\[\eta(x - cx) = (x + NE, \delta_E(x) + NE,\]
\[\delta_E^2(x) + NE, \ldots) \]
\[- (x + NE, 0 + NE,\]
\[0 + NE, \ldots) \]
\[= (0 + NE, \delta_E(x) + NE,\]
\[\delta_E^2(x) + NE, \ldots) \]

is nilpotent in \(Hk \). Hence \(E \) is partitioned. \qed

A basic result in differential algebra (of characteristic zero) is that if \((F, \delta_F)\) is a differential field of characteristic
zero with field of constants C, then $y_1, \ldots, y_n \in F$ are linearly dependent over C if and only if the Wronskian $w(y_1, \ldots, y_n) = 0$. The Wronskian $w(y_1, \ldots, y_n)$ of $y_1, \ldots, y_n \in F$ is defined by

$$w(y_1, \ldots, y_n) = \det(\delta_F^{-1}(y_j)).$$

This result does not carry over directly to differential quasifields of positive characteristic, as the following example shows.

Example 7 Let k be a field of characteristic 2, and consider the differential quasifield Hk. The elements $x^{[2]}$
and $x^{[3]}$ in Hk are certainly linearly independent over $C_{Hk} \cong k$, but a quick calculation using

$$x^{[m]}x^{[n]} = \binom{m+n}{n}x^{[m+n]}$$

shows that

$$w(x^{[2]}, x^{[3]}) = 0.$$

In order to generalize this result about linear dependence over constants to the case of differential quasifields, we need to introduce the following.
Let \((R, \delta_R)\) be any differential ring, let
\[y = (y_1, \ldots, y_n) \in R^n, \]
and let
\[s = (s_1, \ldots, s_n) \in \mathbb{N}^n. \]

The \(s\) – quasiwronskian of \(y\), denoted by \(w_s(y)\), is defined by
\[
 w_s(y) = \det(\delta^s_R(y_j)).
\]
So the (usual) Wronskian of \(y\) is the \((0, 1, \ldots, n - 1)\)-quasiwronskian of \(y\).

Theorem 8 Let \(E\) be a differential quasi-field of positive characteristic with field of constants \(C_E\), suppose that \(E\) is partitioned, and let
\[y = (y_1, \ldots, y_n) \in E^n. \]
Then \(\{y_1, \ldots, y_n\} \) is linearly independent over \(C_E \) if and only if there exists \(s = (s_1, \ldots, s_n) \in \mathbb{N}^n \) such that \(w_s(y) \) is invertible in \(E \).

Proof: Assume first that \(\{y_1, \ldots, y_n\} \) is linearly dependent over \(C_E \), so that there exist \(c_1, \ldots, c_n \in C_E \), not all zero, such that \(\sum_{j=1}^{n} c_j y_j = 0 \). Hence for any \(s = (s_1, \ldots, s_n) \in \mathbb{N}^n \), \((c_1, \ldots, c_n) \) is a non-trivial solution in \(C_E^n \) to the system of linear equations

\[
\sum_{j=1}^{n} \partial_s^i(y_j)x_j = 0, \quad i = 1, \ldots, n,
\]
with coefficients in E in the unknowns x_1, \ldots, x_n. The determinant of the matrix of coefficients of the above system is the s-quasiwronskian $w_s(y)$ of $y = (y_1, \ldots, y_n)$, and since this system has a non-trivial solution, this determinant is not invertible in E, and hence is nilpotent in E.

Now assume that $\{y_1, \ldots, y_n\}$ is linearly independent over C_E. We proceed with a special case, namely when $E = Hk$ for a field k of positive characteristic.
Lemma 9 Let k be a field of positive characteristic, $E = Hk$ the differential quasifield of Hurwitz series over k, and $(y_1, \ldots, y_n) \in E^n$. If $\{y_1, \ldots, y_n\} \subseteq E$ is linearly independent over k, then there exists some $(s_1, \ldots, s_n) \in \mathbb{N}^n$ such that $\det(\partial^{s_i}(y_j))$ is invertible in E.

Proof: We proceed using induction on n. If $n = 1$, then y_1 is linearly independent over k if and only if $y_1 \neq 0$, so take $s_1 = \text{ord}(y_1)$. Then $\partial^{s_1}(y_1) = \det(\partial^{s_1}(y_1))$ is invertible in E, since

$$\pi_{s_1}(y_1) = \pi_0(\partial^{s_1}(y_1)) \neq 0.$$
Now suppose that \((y_1, \ldots, y_n) \subseteq E\) is linearly independent over \(k\). We may also assume that \(s_1 = \text{ord}(y_1) \leq \text{ord}(y_j)\) for \(j = 2, \ldots, n\). Define

\[c_j = \pi_{s_1}(y_j)\pi_{s_1}(y_1)^{-1} \in k \]

for \(j = 2, \ldots, n\), and define

\[z_1 = y_1 \quad \text{and} \quad z_j = y_j - c_j y_1 \]

for \(j = 2, \ldots, n\). A routine calculation shows that \(\{z_1, \ldots, z_n\}\) is linearly independent over \(k\). Furthermore, we see that \(\text{ord}(z_j) > s_1\) for \(j = 2, \ldots, n\), since
\[
\pi s_1(z_j) = \pi s_1(y_j - c_j y_1) \\
= \pi s_1(y_j) \\
- \pi s_1(y_j) \pi s_1(y_1)^{-1} \pi s_1(y_1) \\
= 0
\]

Since \(\{z_2, \ldots, z_n\} \) is linearly independent over \(k \), by induction there exists

\[
(s_2, \ldots, s_n) \in \mathbb{N}^{n-1}
\]

such that

\[
\text{det}((\partial^{s_i} y_j)_{2 \leq i,j \leq n})
\]
is invertible in Hk. Then since
\[\det(\partial^s_i(y_j)) = \det(\partial^s_i(z_j)), \]
and since
\[\partial^s_1(z_1) = \partial^s_1(y_1) \]
is invertible in Hk, we see by expanding
\[\det(\partial^s_i(z_j)) \]
along the first row that
\[
\det(\partial^s_i(z_j)) = \partial^s_1(z_1) \det((\partial^s_i(z_j))_{2 \leq i, j \leq n}) \\
+ \sum_{j=2}^{n} (-1)^{j+1} \partial^s_1(z_j) M_{(1,j)},
\]
where $M_{(1,j)}$ is the $(1, j)$-minor of $(\partial^s_i(z_j))$. Now since each $\partial^s_1(z_j)$ is nilpotent in
For $j = 2, \ldots, n$, we see that
\[
\sum_{j=2}^{n} (-1)^{j+1} \partial^{s_1}(z_j) M_{(1,j)}
\]
is nilpotent in Hk, so that
\[
\det(\partial^{s_i}(z_j)) = \det(\partial^{s_i}(y_j))
\]
is invertible in Hk. □

Continuing with the proof of Theorem 8, let $k = E/N_E$, where N_E is the nil-
radical of E, and consider the embedding $\eta_E : E \longrightarrow Hk$. By Proposition 4,
\(\{y_1, \ldots, y_n\} \subseteq E \) is linearly independent over \(C_E \) if and only if

\[\{\eta(y_1), \ldots, \eta(y_n)\} \subseteq Hk \]

is linearly independent over \(\eta(C_E) \). Since \(E \) is partitioned

\[\eta(C_E) \cong k \]

by Proposition 6, so Lemma 9 applies to show that there exists some

\[(s_1, \ldots, s_n) \in \mathbb{N}^n \]

such that \(\det(\partial^{s_i}(\eta(y_j))) \) is invertible in \(Hk \). But since

\[\det(\partial^{s_i}(\eta(y_j))) = \eta(\det(\partial^{s_i}(y_j))), \]
Proposition 2 tells us that \(\det(\partial^s_i(y_j)) \) is invertible in \(E \), as desired. \(\square \)

Corollary 10 Let \(k \) be a field of positive characteristic, and let \(K \) be any field extension of \(k \). The finite set

\[
\{h_1, \ldots, h_n\} \subseteq Hk
\]

is linearly independent over \(k \) if and only if

\[
\{h_1, \ldots, h_n\} \subseteq HK
\]

is linearly independent over \(K \).
Proof: Clearly if \(\{h_1, \ldots, h_n\} \) is linearly dependent over \(k \), then \(\{h_1, \ldots, h_n\} \) is linearly dependent over \(K \). Now assume that \(\{h_1, \ldots, h_n\} \) is linearly independent over \(k \). By Theorem 8, there is some \(s \in \mathbb{N}^n \) such that \(w_s(h_1, \ldots, h_n) \) is invertible in \(k \), and hence is invertible in \(K \). It follows from Theorem 8 again that \(\{h_1, \ldots, h_n\} \) is linearly independent over \(K \).

Recall that if \(A, B, \) and \(C \) are rings and if \(f : A \to C \) and \(g : B \to C \) are ring morphisms, then the bilinear mapping
\[A \times B \longrightarrow C \] given by \((a, b) \mapsto f(a)g(b)\) induces a ring morphism

\[\Phi : A \otimes B \longrightarrow C. \]

In addition if \(A, B\) and \(C\) are differential rings with derivations \(\delta_A, \delta_B\) and \(\delta_C\) respectively and \(f : A \longrightarrow C\) and \(g : B \longrightarrow C\) are differential ring morphisms then \(A \otimes B\) is a differential ring with derivation

\[\delta_{A \otimes B} = \delta_A \otimes \text{id}_B + \text{id}_A \otimes \delta_B \]

and \(\Phi : A \otimes B \longrightarrow C\) is a differential ring morphism.
Proposition 11 Let K be any field extension of k. Then the differential k-algebra homomorphism

$$\Phi : K \otimes_k Hk \rightarrow HK,$$

defined by

$$\Phi(a \otimes (b_n)) = (ab_n)$$

for any $a \in K$ and $(b_n) \in Hk$, is injective.

Proof: Here we must show that if

$$\sum_{i=1}^{n} a_i \otimes h_i \neq 0$$
with $a_i \in K$ and $h_i \in Hk$ then

$$
\sum_{i=1}^{n} a_i h_i \neq 0.
$$

Reduce to the case where $\{h_1, \ldots, h_n\}$ is linearly independent over k. Now, if we were to have

$$
\sum_{i=1}^{n} a_i h_i = 0,
$$

then since $\{h_1, \ldots, h_n\}$ is linearly independent over k, by Corollary 10 $\{h_1, \ldots, h_n\}$ is also linearly independent over K. Thus we must have

$$
a_i = 0
$$
for each i, but this implies that

$$\sum_{i=1}^{n} a_i \otimes h_i = 0.$$

\[\square \]

Theorem 12 Let E be a partitioned differential quasifield and let A be a differential ring that is obtained from E by extension of scalars. Then A is a partitioned differential quasifield.

Proof: Let E have field of constants C_E, nilradical N_E and let $C_E \subset K$ be a field extension. We have

$$A = K \otimes_{C_E} E$$
and since $E = C_E \oplus N_E$, it follows that

$$A = (K \otimes_{C_E} C_E) \oplus (K \otimes_{C_E} N_E)$$

as an abelian group. Now

$$K \cong K \otimes_{C_E} C_E,$$

so identify $K \otimes_{C_E} C_E$ with K. Set

$$N = K \otimes_{C_E} N_E.$$

Clearly N is the nilradical of A and

$$A = K \oplus N.$$

If $x \in A$ and $x \notin N$ then $x = r + n$ for $0 \neq r \in K$ and n a nilpotent. If $n^m = 0$,
then letting
\[y = \frac{1}{r} \left(1 + \sum_{i=1}^{m-1} \left(\frac{-n}{r} \right)^i \right) \]

it is easy to verify that \(xy = 1 \). Thus \(A \) is a differential ring such that each element is nilpotent or is invertible. We must show that for every nilpotent \(n \in A \), there is some \(l \in \mathbb{N} \) such that \(\delta^l_A(n) \) is invertible in \(A \), where \(\delta_A \) is the derivation on \(A \). Since \(E \) is partitioned,

\[E/N_E \cong C_E, \]

and so we have an embedding

\[\eta : E \rightarrow HC_E. \]
Since K is a C_E-vector space, K is flat as a C_E-module, and so

$$id_K \otimes \eta : A \longrightarrow K \otimes_{C_E} HC_E$$

is an embedding. Also

$$\Phi : K \otimes_{C_E} HC_E \longrightarrow HK$$

is an embedding by Proposition 11, so the composition

$$\vartheta = \Phi \circ id_K \otimes \eta, \quad \vartheta : A \longrightarrow HK$$

is an embedding. If $n \in A$ is a nonzero nilpotent, then $\vartheta(n)$ is a nonzero nilpotent in HK. Thus there is some $l \in \mathbb{N}$
such that $\partial^l_K \vartheta(n)$ is invertible, so from what we have already shown $\delta^l_A(n)$ is invertible. We conclude that A is a quasifield. Since $A = K \oplus N$, A is partitioned. \qed