1. Let $S := \{+, \times, 0, 1\}$ be the signature of rings, let \mathcal{N} be the S-structure with universe \mathbb{N} and usual interpretations of the symbols in S, and let t_n be S-terms with no variables such that $t_n^\mathcal{N} = n$. Let \mathcal{A} be an S-structure and α an \mathcal{A}-assignment satisfying $Th(\mathcal{N}) \cup \{x \neq t_n \mid n \in \mathbb{N}\}$.

(a) Show that such a structure \mathcal{A} exists, using the Compactness of First-Order Logic; as we did in class.

(b) Define $h : \mathbb{N} \to \mathcal{A}$ by $h(n) := t^n_\mathcal{A}$. Show that h is an S-embedding. These elements $t^n_\mathcal{A}$ are the standard elements of \mathcal{A}; others are non-standard.

(c) Find an S-formula ϕ_\leq such that for any \mathcal{N}-assignment β, $\Vdash_\mathcal{N} \phi_\leq[\beta]$ if and only if $\beta(v_1) \leq \beta(v_2)$. Show that ϕ_\leq also defines an ordering on the universe A of \mathcal{A}.

(d) Are any nonstandard elements of \mathcal{A} less than $0^\mathcal{A}$ in the sense of the ordering given by ϕ_\leq? Between $t_3^\mathcal{A}$ and $t_4^\mathcal{A}$?

(e) Find an S-formula η such that for any \mathcal{N}-assignment β, $\Vdash_\mathcal{N} \eta[\beta]$ if and only if $\beta(v_1)$ is an even number. Show that there is an \mathcal{A}-assignment α such that $\Vdash_\mathcal{A} \eta[\alpha]$ and $\alpha(v_1)$ is non-standard. For what other properties of natural numbers (besides “even”) can you do the same?

2. Use the Compactness theorem for first-order logic to show that the class of connected graphs is not axiomatizable. That is, there is no signature S and no set of S-sentences T such that every model of T is a connected graph and every connected graph is a model of T.

3. Let $S := \{+, \times, 0, 1\}$ be the signature of rings.

(a) Write down a set T of S-sentences whose models are algebraically closed fields. (That is, all models of T are algebraically closed fields, and all algebraically closed fields are models of T.)

(b) Use the Compactness theorem for first-order logic to show that there is no set T' of S-sentences such that its models are non-algebraically closed fields.

4. Let $S := \emptyset$ be the the first-order signature with no non-logical symbols.

(a) Give an explicit enumeration $\{\theta_n \mid n \in \mathbb{N}\}$ of all S-sentences. In your enumeration, what is θ_0? θ_1? θ_{17}?

(b) What S-structure will be produced by the Henkin construction starting with $\Gamma := \emptyset$ with your enumeration?

5. Ask an interesting question about first-order logic and try to answer it. This question is as serious as the rest of them!