Math A4400: Mathematical Logic

7th problem set, due at 2pm on Wednesday, November 20th.

Bring your solutions class, or slide them under the door of my office NAC 6278.

1. Let \(S \) be a signature with one ternary relation symbol \(R \) and no other symbols. For each of the following four \(S \)-structures \(A_i \), find an \(S \)-sentence \(\theta_i \) such that \(\models_{A_i} \theta_i \) and \(\not\models_{A_j} \theta_i \) for any \(j \neq i \).

 (a) \(A_1 := \mathbb{Q} \) and \(R^{A_1} := \{(a,b,c) \in \mathbb{Q}^3 \mid a + b = c \} \).

 (b) \(A_2 := \mathbb{Q} \) and \(R^{A_2} := \{(a,b,c) \in \mathbb{Q}^3 \mid a \cdot b = c \} \).

 (c) \(A_3 := \mathbb{Q} \) and \(R^{A_3} := \{(a,b,c) \in \mathbb{Q}^3 \mid a \leq b \leq c \} \).

 (d) \(A_4 := \mathbb{Z} \) and \(R^{A_4} := \{(a,b,c) \in \mathbb{Z}^3 \mid a \leq b \leq c \} \).

2. Let \(S \) be the signature with one binary relation \(Q \), and let \(A \) be the \(S \)-structure with universe \(\{a \in \mathbb{Z} \mid a \geq 17\} \) and \(Q^A := \{(a,b) \in \mathbb{Z}^2 \mid a < b \} \). Let \(\theta \) be the \(S \)-formula \(Qv_1v_2 \land \neg \exists v_3 (Qv_1v_3 \land Qv_3v_2) \). For each of the formulas \(\phi_i \) below, find an \(A \)-assignment \(\alpha_i \) such that \(\models_A \phi_i[\alpha_i] \) and \(\not\models_A \phi_j[\alpha_i] \) for any \(j \neq i \).

 (a) \(\phi_1 := \forall v_3 (Qv_3v_7 \rightarrow v_5v_7) \).

 (b) \(\phi_2 := \exists v_3 (Qv_3v_7 \land (\theta v_3(v_3)) \land \varphi_2(v_7)) \).

 (c) \(\phi_3 := \neg \forall v_4 (Qv_4v_7 \rightarrow \theta v_4(v_4)) \).

 (d) \(\phi_4 := \exists v_3 \exists v_6 (Qv_3v_6 \land Qv_6v_7 \land \forall v_8 (Qv_8v_7 \rightarrow (\neg v_8v_5 \lor v_8v_6))) \).

3. Let \(S \) be the signature with one binary function symbol \(\times \), and let \(A \) be the \(S \)-structure with universe \(\mathbb{Q} \) and with \(\times^A(a,b) := a \cdot b \). Show that there is no \(S \)-formula \(\phi \) such that \(\models_A \phi[\alpha] \) if and only if \(\alpha(v_1) \cdot \alpha(v_2) = \alpha(v_3) \).

 Hint: consider automorphisms of \(A \).

4. (The last problem from the second midterm.) Let \(S \) be a signature with a binary function symbol \(F \). Let \(A \) be the \(S \)-structure with universe \(\mathbb{Z} \) and \(F^A(a,b) := a + b \). Let \(B := \{-1,1\} \), and let \(h : A \rightarrow B \) be given by

 \[
 h(n) := \begin{cases}
 1 & \text{if } n \geq 0 \\
 -1 & \text{if } n < 0
 \end{cases}
 \]

 If there is an \(S \)-structure \(B \) with universe \(B \) for which \(h \) is an \(S \)-homomorphism, determine \(F^B \). Otherwise, prove that there is no such \(S \)-structure

5. Ask an interesting question about the material we covered since the midterm and try to answer it. This question is as serious as the rest of them!