1. Suppose that X, Y, and Z are symbols in a signature S.

 (a) Could both XYZ and XZY be S-formulas? If so, what kinds of symbols would X, Y and Z have to be?

 (b) Could both XYZ and ZYX be S-terms? If so, what kinds of symbols would X, Y and Z have to be?

 List all possibilities and carefully prove your answers.

2. Let S be a signature with one binary function symbol F and no other symbols. Let $\phi := \forall x Fxy = x$ and $\psi := \forall y Fxy = x$ be two S-formulas. Consider the following three S-structures with universe \mathbb{Z}:

 - $F^T(a, b) := a \cdot b$
 - $F^P(a, b) := a + b$
 - $F^F(a, b) := a$

 For each of the six possible combinations of formula and structure, describe the set of assignments that satisfy that formula in that structure.

3. Let S be a signature, x a variable, and τ an S-term. Prove or refute the following.

 (a) If t is another S-term, and t' is the expression obtained by replacing every instance of x in t with τ, then t' is also an S-term.

 (b) If α is an S-formula, and β is the expression obtained by replacing every instance of x in α with τ, then β is also an S-formula.

4. Ask an interesting question about this week's material and try to answer it. This question is as serious as the rest of them!

 Bonus Let S be the signature with two binary function symbols $+$ and \times and two constant symbols 0 and 1. Let \mathcal{N} be the S-structure with universe \mathbb{N} and the usual interpretations of the symbols of S.

 (a) Show that for every natural number n, there is an S-term $n \cdot \alpha$ with no variables such that $\mathcal{N} \cdot [\alpha] = n$ for any \mathcal{N}-assignment α.

 (b) Suppose that \mathcal{A} is another S-structure, and suppose that for any atomic S-formula ϕ with no variables, any \mathcal{A}-assignment α, and any \mathcal{N}-assignment ν, $\mathcal{A} \cdot [\alpha] = \mathcal{N} \cdot [\phi[\nu]]$ if and only if $\mathcal{A} \cdot \phi[\alpha] = \mathcal{N} \cdot \phi[\nu]$. Show that there exists a unique S-embedding from \mathcal{N} to \mathcal{A}.