
Practical Private-key Fully Homomorphic Encryption in
Rings

Alexey Gribov1, Delaram Kahrobaei1, and Vladimir Shpilrain1

City University of New York
gribov.alesha@gmail.com dkahrobaei@gc.cuny.edu

shpil@groups.sci.ccny.cuny.edu ⋆

Abstract. We describe a practical fully homomorphic encryption (FHE) scheme
based on homomorphisms between rings and show that it enables very efficient
computation on encrypted data. Our encryption though is private-key; public in-
formation is only used to operate on encrypted data without decrypting it. Still,
we show that our method allows for a third party search on encrypted data.

1 Introduction

The most widely known existing solution to the fully homomorphic encryption (FHE)
problem is due to Craig Gentry [5], subsequently improved in [1] and other papers, and
the relevant software has been developed by IBM [7]. This solution relies in its security
on variants of the “bounded-distance decoding” problem that has the property of ran-
dom self-reducibility, which basically means that it is about as hard on average as it is
in the worst case. While this property is indeed a good evidence of security, the result-
ing homomorphic encryption algorithm is slow, and more importantly, computation on
data encrypted with this algorithm is too inefficient to be practical. Very informally, the
reason is that, to provide semantic security, encryption has to be randomized, but on the
other hand, a homomorphism should map zero to zero. To resolve this conflict, the ci-
phertext zero is “masked” by “noise”. The problem now is that during any computation
on encrypted data, this “noise” tends to accumulate and has to be occasionally reduced
by recryption (also known as bootstrapping), a process that produces the equivalent
ciphertext but with less noise. Recryption is an expensive procedure, and this is what
limits real-life applications of the existing FHE solutions. There were other proposals
for fully homomorphic encryption following Gentry’s, see e.g. [2], [4], [3] (the latter is
actually very simple conceptually), but they all still involve “bootstrapping”.

Our approach to homomorphic encryption is based on the use of rings (with usual
operations of addition and multiplication) and homomorphisms between them. This has
an additional benefit (as far as most real-life applications are concerned) of avoiding
an “overhead” coming from converting real-life arithmetic to Boolean circuits and vice
versa. Recall that a map φ : R→ S between rings is a (full) homomorphism if φ(u+v) =
φ(u) + φ(v) and φ(uv) = φ(u)φ(v) for any u,v ∈ R. This implies, in particular, that

⋆ Research of all three authors was partially supported by the ONR (Office of Naval Research)
grant N000141210758.

φ(0) = 0, i.e., a homomorphic encryption cannot possibly be semantically secure. Thus,
when people use the expression “homomorphic encryption”, what they actually mean
is that the encryption function is a homomorphism modulo some ideal (whose elements
are often called “noise”) of the ring S. This ideal then gets “killed” during decryption,
and therefore its elements do not influence the result of computation on plaintexts.

In Section 2, we give a high-level description of our FHE method, and in Section 4
we describe a practical instantiation of this general scheme. In particular, we show why
computation on encrypted data is done without accumulating noise. In Section 3, we
discuss security of our scheme.

Since our FHE scheme is private-key by design, its security properties are different
from those of Gentry’s and other similar public-key schemes. We give security overview
in Section 3; here we just mention that our scheme is unconditionally (i.e., without any
computational assumptions) secure against ciphertext-only attack, whereas the situa-
tion with known-plaintext attacks is more delicate and is addressed in conjunction with
specific applications of FHE. Basically, we “sacrifice” (to some extent) encryptions of
zero but protect privacy of nonzero elements. This can be considered a theoretical vul-
nerability, but this is not a problem for most real-life applications.

2 Encryption overview

We emphasize once again that our FHE scheme is private-key. This may somewhat
limit the range of applications, but on the other hand, this leaves a lot of flexibility in
terms of how much information the data owner is willing to give to the entity that stores
(and operates on) encrypted data. In particular, this can provide a customer (a company
that holds sensitive data) with a “toolbox” for building their own instantiation of our
general FHE scheme, so that nobody outside the company would know details of the
encryption/decryption mechanisms, even though the public should be able to operate on
encrypted data. The latter requirement makes “security through obscurity” impossible
for FHE schemes, so there should be at least some minimum amount of information
available to the public, and this minimum is essentially just the general framework that
we describe in this section.

1. Plaintexts are elements of a (private or public) ring R.
2. Ciphertexts are elements of a public ring S, such that R ⊂ S is a subring of S. The

ring S also has a (private) ideal I such that S/I = R′, where the ring R′ is isomorphic
to R. (The ring R′ may be just equal to R, in which case R is called a retract of S.)

3. Given u ∈ R, encryption E(u) = u+E(0), where E(0) is a random element of the
(private) ideal I of the ring S.
Technically, this encryption function is not a homomorphism, but it is a homo-
morphism modulo the ideal I, which is what matters here. It obviously respects
addition modulo I, and for multiplication we have: E(u)E(v) = (u+ j1)(v+ j2) =
uv+ j1u+u j2 + j1 j2 = uv+ j3 = E(uv) modulo I, where j1, j2, j3 ∈ I.

4. Decryption is a map ρ from S to R′ that takes every element of I to 0, followed by
an isomorphism φ : R′ → R.

Here is a diagram to “visualize” this general scheme:

R E−→ S
ρ−→ R′ φ−→ R.

Note that when we say “a public ring S”, this means that we give to the public a collec-
tion of rules for adding and multiplying elements of S. Typically, this can be a (finite)
set of elements that generate S as a ring, together with the multiplication table for this
set of elements.

Below is a diagram of the whole encryption process starting with a real-life database
D:

D α−→ R E−→ S
ρ−→ R′ φ−→ R

β−→ D,

where β(α(x))) = x for any x ∈ D. All maps in this diagram are private, except that in
some applications, α (and therefore also β) may be shared with a third party, see e.g.
our Section 8.1.

We note again that the ring R can be private, although some general information
about it is usually available to the public.

3 Security overview

Recall again that our encryption is private-key, and in particular, in the model consid-
ered in this paper, we do not give any access to the encryption mechanism to the third
party.

We have to remind the reader, just in case, that there is a difference in security anal-
ysis between public-key and private-key encryption. In particular, “brute force” attacks
in the public-key sense (e.g. encryption emulation attack) are usually not applicable
if the encryption is private-key, unless plaintexts have some distinctive (usually non-
mathematical) features, like words that “make sense”. For example, if one encrypts a
credit card number by, say, adding to it a random number modulo some p, then this
encryption will be perfectly secure against encryption emulation attack, although com-
pletely insecure against known-plaintext attack (KPA).

That said, we point out that FHE is a rather special case: even if the encryption itself
is private-key, some information has to be made public because otherwise, the public
will not be able to operate on encrypted data, and this will defy the purpose of FHE.
Still, we manage to take advantage of our encryption being private-key, and this allows
us, in particular, to make our scheme unconditionally (i.e., without any computational
assumptions) secure against ciphertext-only attack, which is not quite trivial for an FHE
scheme even if it is private-key. As we pointed out in the previous paragraph, the real
challenge though is to make a private-key scheme KPA secure. Since our encryption is
fully homomorphic, of particular importance is the following question: does accumulat-
ing several known encryptions of 0 allow the adversary to decrypt without ambiguity?
Or at least to recognize other encryptions of 0? The answer to the latter question is al-
ways “yes” because the ideal where encryptions of 0 live is finite-dimensional, so the
question is only about how many encryptions of 0 are sufficient to know to find a linear
basis of the ideal and therefore to be able to recognize other encryptions of 0.

In our scheme, this number is not large, but even if the adversary learns how to
recognize encryptions of 0, this will not allow him to decrypt nonzero elements with-
out ambiguity, which is what matters in most real-life applications. Still, in Section
7, we show how to prevent accumulation of encryptions of 0 during private search on
encrypted database because we think this might be of independent interest.

In general, we bifurcate our scheme between two cases, depending on the nature of
the data to be encrypted and on relevant real-life applications:

(1) Data do not have a ring structure; for example, if a database D consists of credit card
numbers (or phone numbers, etc.), then the embedding of plaintexts in the ring R can
be just one-to-one but not necessarily a full homomorphism. This is the most popular
case as far as real-life applications of FHE are concerned.

(2) Data do have a ring structure, in which case embedding of a database D in the ring
R of plaintexts has to be a full homomorphism, i.e., both additive and multiplicative,
which inevitably makes encryption less secure. This case is relevant to the problem of
delegating various computations to a remote server. This case is more delicate from the
security point of view, but at the very least we have security against ciphertext-only
attack, see Section 6.

4 The platform ring

We start by introducing a series of rings Sn:

Sn = ⟨x1, . . . ,xn | p ·1 = 0, x2
i = xi, xix j = x jxi (f or all i, j)⟩.

The first relation p ·1 = 0 just means that the ring Sn is a linear algebra over Zp.
We note that Sn is a linear vector space over Zp. The “standard” basis of this vector

space consists of 1 and monomials of the form xi1 , . . . ,xik with i1 < i2 < .. . < ik. This is
because the ring Sn is commutative and x2

i = xi for all i. The number of these monomials
therefore equals the number of subsets of the set of generators, i.e., equals 2n. It follows
that the number of elements in Sn is p2n

, so for example with n = 7 this will be p128.
Computing in the ring Sn is very similar to computing with polynomials. Addi-

tion in Sn is just adding coefficients at the corresponding monomials. Multiplication
amounts to multiplying out “polynomials” in xi the usual way, followed by applying the
relations x2

i = xi. The latter amounts to just “erasing” all integers greater than 1 in the
exponents. This allows one, in particular, to use known fast algorithms for multiplying
usual polynomials, followed by “erasing” exponents greater than 1. Moreover, we show
in the next Section 4.1 that the ring Sn has an orthogonal basis (as a linear space over
Zp) consisting of idempotents ei such that eie j = 0 for all i ̸= j, which means that Sn is
isomorphic to a direct sum of 2n copies of the ring Zp.

4.1 Idempotent elements and orthogonal basis

The ring Sn has many idempotents. From the relations x2
i = xi we see that each xi is an

idempotent, and since a product of idempotents is again an idempotent, every monomial

is an idempotent in Sn, so there are at least 2n idempotents. There are also other idem-
potents in Sn, which are not monomials; for example, g = xi−xix j +x j is an idempotent
if i ̸= j. In fact, the number of idempotents in Sn is superexponential in n.

Indeed, for any set of indices F ⊂ {1, . . . ,n}, denote eF := ∏i∈F xi ·∏ j ̸∈F(1− x j).
It is easy to see that each eF is an idempotent, and there are 2n of them, by the number
of subsets of {1, . . . ,n}. Moreover, these idempotents eF are pairwise orthogonal, i.e.,
eF eG = 0 if F ̸= G. Therefore, any sum of different eF is again an idempotent, and there
are 22n

of such sums. For example, with n = 7, there are 2128 idempotents in the ring
Sn.

We emphasize again (because this is important for computation) that these eF form
an orthogonal linear basis of Sn over Zp, which makes multiplication in Sn very efficient
as long as elements of Sn are represented as linear combinations of eF . We will therefore
publish the ring Sr (for an appropriate r, see the next section) as follows:

Sr = ⟨e1, . . . ,e2r | p ·1 = 0, e2
i = ei (f or all i), eie j = 0 f or i ̸= j⟩.

The order of ei is random, and it is part of the private key.
Thus, encryption will include conversion of elements of Sr from the “standard”

basis {xi} to the orthogonal basis {ei}, and decryption will include conversion from the
orthogonal basis to standard.

4.2 Selecting an ideal for encryptions of 0

We are now going to define a private ring R = Sr/I and a private ideal I of the ring S
that will be used for (randomized) encryptions of 0.

The ideal I is going to be generated (as an ideal of Sr) by several elements of the
form (xm −w(x1, . . . ,xm−1)), for different m, where m ≥ n+1 and w = w(x1, . . . ,xm−1)
is a random idempotent element of Sm−1 (see our Section 4.1).

The ring R is the factor ring Sr/I, where r is the total number of xi involved. This
ring is naturally isomorphic to Sn. See our Section 5.1 for the recommended values of
parameters.

5 Protocol

Now we give a more formal description of the encryption/decryption protocol. Note that
in this protocol, elements of a private ring R are encrypted. The ring R is isomorphic
to the factor ring of the public ring Sr by a private ideal I, and the latter factor ring is
naturally isomorphic to Sn with n < r. For embedding elements of a real-life database in
Sn, see the discussion below in Sections 5.2, 5.3. The protocol in this section is targeted
mostly at the case where elements of the original database do not have a ring structure
(e.g. credit card numbers, phone numbers, etc.), see also Section 5.2. The case where
elements of the original database do have a ring structure requires an enhancement to the
key generation part of the protocol. We explain this in Section 5.3 to avoid overloading
the basic protocol below with technical details.

1. Key generation I. Alice (the owner of a private database) starts with a presentation
of the ring Sn (with a private n):

Sn = ⟨x1, . . . ,xn | p ·1 = 0, x2
i = xi, xix j = x jxi (f or all i, j)⟩.

2. Key generation II. Alice generates a private encryption/decryption key as follows.
She starts by expanding the set {xi} of the generators by adding several new gen-
erators xn+1, . . . ,xr. She then selects an ideal I of Sr generated (as an ideal of
Sr) by elements of the form (xm −wm(x1, . . . ,xm−1)), for m = n+ 1, . . . ,r, where
wm = wm(x1, . . . ,xm−1) is a random idempotent element of Sm−1.

3. Key generation III. Alice converts the basis {xi} to the orthogonal basis {ei},
i.e., she represents each xi as a linear combination of ei. It may happen that all
generators of the ideal I selected at the previous step have the same coordinates (in
this orthogonal basis) equal to 0. These coordinates are then discarded by Alice, i.e.,
the public ring may have dimension (as a linear vector space over Zp) somewhat
smaller than 2r.
After that, Alice selects a random permutation π on the set of remaining ei and
publishes a presentation P:

P = ⟨e1, . . . ,es | p ·1 = 0, e2
i = ei (f or all i), eie j = 0 f or i ̸= j⟩.

4. Encryption. Encryption of a plaintext u ∈ Sn is E(u) = u + E(0), where E(0)
is a random element of the ideal I of the ring Sr, i.e., an element of the form
∑r

j=n+1(x j −w j(x1, . . . ,x j−1)) ·h j(x1, . . . ,xr), where h j are random elements of Sr,
i.e., sums of monomials in x1, . . . ,xr with random coefficients from Zp. The whole
expression E(u) = u+E(0) is then converted to a linear combination of ei, where
{ei} is the published orthogonal basis.

5. Decryption. To decrypt g = g(e1, . . . ,e2r), Alice first converts g to the “standard”
basis {xi}. After that, she replaces x j by w j(x1, . . . ,x j−1), starting with j = r and
going down to j = n+1. The result is then an element of Sn.

5.1 Suggested parameters and description of the private key

The number p in Zp can be on the order of 30 bits if plaintexts do not have a ring
structure (e.g. credit card numbers, or names, etc.). If plaintexts do have a ring structure,
p has to be on the order of t bits, where t is the security parameter, to prevent brute force
attacks as explained in Remark 2 in Section 7.

The suggested values of n are in the range from 3 to 9; in our tests we used n = 7, in
which case Sn has dimension 128 as a linear vector space over Zp. The suggested value
of r is n+3.

The private key consists of:
(1) The generators (xm −wm(x1, . . . ,xm−1)) of the ideal I of the ring Sr.
(2) The permutation π on the set of orthogonal idempotents ei.
(3) The embedding α of the plaintext database D in the ring Sn = Sr/I.

5.2 One-to-one embeddings of Zp in Sn

If elements of the original database do not have a ring structure (which is the case with,
say, credit card numbers, phone numbers, etc.), then embedding of the original database
in Sn does not have to be homomorphic, it can be just one-to-one. This is sufficient to
be able to do private search on an encrypted database.

The number of one-to-one embeddings of Zp in Sn is really big, even for a small
number n of generators xi, since Sn has p2n

elements.

5.3 Fully homomorphic embeddings of Zp in Sn

First we note that if g is an idempotent of a ring S, then for any ideal I of S, the coset
g+ I is going to be an idempotent of the factor ring R = S/I.

Then, it is obvious that a fully homomorphic embedding α of Zp in a ring S is
completely determined by the image α(1) of the element 1. It is also obvious that α(1)
should be an idempotent of S since 1 is an idempotent of Zp. The element 1 of Zp can
be mapped to any idempotent of Sn, including xi, or 1− xi, or xix j, i ̸= j, etc. There are
therefore 22n

fully homomorphic embeddings of Zp in Sn, by the number of idempotents
in Sn.

When we encrypt α(1) in Sr, the result is an idempotent of Sr plus “noise”, i.e., plus
an element of the ideal I of Sr. However, if Sr is published explicitly as a direct sum of
copies of Zp (i.e., if a basis of orthogonal idempotents of Sr is public), then any ideal
of Sr just corresponds to a subset of direct summands. In other words, encryptions of
0 in the orthogonal basis have some of the coordinates random while other coordinates
are just equal to 0, which is not good because encrypted nonzero elements may then be
exposed, even though 1+E(0) may no longer be an idempotent of Sr.

To prevent this from happening, one can use some or all of the following enhance-
ments. We particularly recommend to use (i) in implementations since it is the most
practical one and the easiest one to implement, even though it may somewhat slow
down computation on encrypted data. Our description below is not very formal, to bet-
ter explain the idea.

(i) At Step 3 of the protocol in Section 5, we used a random permutation on the or-
thogonal basis as part of a secret encryption/decryption key. In view of what is said
above, this may not be enough to diffuse α(k) in case of a fully homomorphic embed-
ding of Zp. We therefore suggest to use a more general linear transformation of the
orthogonal basis in this case. Specifically, after applying a random permutation on the
orthogonal basis, we suggest to use a random “triangular” linear transformation of the
form f j = ∑i∈Fj ei j, where the sets Fj of indices have the property Fk ⊆ Fj if k ≤ j. This
property implies that f j fk = fk if k ≤ j. If this linear transformation is invertible, then f j
form a new basis of idempotents. They are no longer orthogonal, but the multiplication
law f j fk = fk if k ≤ j makes multiplication in the public ring Sn still quite efficient.

To ensure that a triangular transformation is invertible, one can select it as follows.
After applying a random permutation on the orthogonal basis of ei, let f1 = e1. Then,
for j ≥ 2, f j = e j +∑i< j ciei, where each coefficient ci is randomly selected to be equal
to either 0 or 1.

We note that the number of invertible triangular transformations as above is quite
large. Indeed, at the last step alone, when choosing a linear combination for f2r , one has
22r−1 choices. With suggested parameter r = 10, this is a huge number.

The following two enhancements are not as practical as the one above, but we still
include them as they might be of interest to algebraists.

(ii) At Step 2 of the protocol in Section 5, the ideal I (for encryptions of 0) can be gener-
ated not necessarily by (xm−wm(x1, . . . ,xm−1)), but by (xi1 . . .xik xm−wm(x1, . . . ,xm−1)),
where all i j < m, so that xi1 . . .xik xm is an arbitrary monomial involving xm rather than
just xm itself. Since any monomial is an idempotent, this represents an isomorphic em-
bedding of Sm into itself that is not onto unless the monomial is just xm. Note that the
monomial xi1 . . .xik xm will play the role of xm in any further action, in the sense that
whenever xm appears in a further action, it should be in a monomial which is a multi-
ple of the monomial xi1 . . .xik xm. Then, during decryption, the monomial xi1 . . .xik xm is
replaced by wm(x1, . . . ,xm−1), and this decryption is unique.

(iii) Recall that Sn has a canonical basis of 2n orthogonal idempotents that we denote
by ei. Transition between the standard basis of xi and the orthogonal basis of ei is not
very transparent, so in order to easier implement measures (such as (ii) above) to avoid
exposure of nonzero elements of Zp in ciphertext, one can do the following. Instead of
choosing a generator of the ideal I in the form (xi1 . . .xik xm−wm(x1, . . . ,xm−1)), one can
choose it in the form (xi1 . . .xik xm −∑i∈F e′i), where e′i are elements of the orthogonal
basis of Sm−1 (converted to the standard basis) and F is a subset of the set of all indices.
We note that each e′i can be represented as a sum of monomials in x1, . . . ,xm−1 with
coefficients (“coordinates”) 0 or ±1. Then, in the standard basis of Sm, coordinates of
e′i will be (e′i,−e′i), i.e., concatenation of coordinates of e′i and −e′i in the standard basis
of Sm−1.

Finally, we re-iterate that applying an enhanced procedure from this subsection may
slow encryption down a bit, but as we have mentioned before, encryption is a one-time
thing, so what really matters for real-life applications is how efficient multiplication in
the public ring is. We claim that multiplication remains efficient due to the rule f j fk = fk
if k ≤ j. With suggested parameters, the number of f j in the basis is 210.

6 Ciphertext security

In this section, we explain why our encryption is secure against ciphertext-only attack.
This is a very important security feature in typical real-life applications since it keeps
private information secure in the event of a hackers’ attack. We note that for a “reg-
ular” (non-homomorphic) private-key encryption ciphertext-only security is trivial to
achieve. This is, however, not the case with FHE since in most cases, given several
ciphertexts, an attacker can obtain several (plaintext, ciphertext) pairs using homomor-
phic properties of the encryption, and then use the known plaintext attack.

Note that with FHE, if original plaintexts come from Zp, then there are precisely
three ways that one can possibly obtain any (plaintext, ciphertext) pairs based on ci-
phertexts only:

(1) Since the ring Zp is commutative, for any two elements a,b ∈Zp we have ab−ba =
0. By the homomorphic property of the encryption function E, we should therefore have
xy− yx = E(0) for any x,y in the encrypted database.

(2) For any a ∈ Zp, a+ a+ . . .+ a = 0 (p times). Therefore, we should have x+ x+
. . .+ x = E(0) (p times) for any x in the encrypted database.

(3) For any a ∈ Zp, a ̸= 0, ap−1 = 1 (by Fermat’s little theorem). Therefore, we should
have xp−1 = E(1) for any x in the encrypted database.

In our FHE scheme, the ring S containing ciphertexts is isomorphic to the direct sum
of 2n copies of Zp, and therefore (a) ab−ba = 0; (b) a+a+ . . .+a = 0 (p times); (c)
ap−1 = 1 for any elements a,b ∈ S. Therefore, one cannot get any nontrivial (plaintext,
ciphertext) pairs based on ciphertexts only. We note that the latter property (c) is the
rare one and is not satisfied by most rings used for FHE in the literature.

7 Accumulating encryptions of zero and security of nonzero
elements

Accumulating many encryptions of zero (or, more generally, of the same element) that
use the same ideal I of the public ring is a security hazard in any FHE scheme based
on rings, see e.g. [6]. Specifically, if an attacker accumulates a number of encryptions
of zero exceeding the dimension of the ideal I (as a linear algebra over Zp), then he
can recover this ideal by using linear algebra. Even though in our model we do not give
access to the encryption mechanism to anybody except for the private key holder, en-
cryptions of zero may be accumulated based on queries against the encrypted database
and responses to these queries.

The most straightforward way of dealing with this issue is just to increase the di-
mension of the ideal I used for encryptions of zero. However, this will affect efficiency
and ruin the hope to make FHE practical enough for performing operations on encrypted
data (e.g. private search) that involve millions of multiplications.

A more practical way to protect the ideal I is to use a different ideal J ⊃ I for
encryptions of 0 every time a query against the encrypted database is made. This is
described in our Section 8.1; in particular, see Remark 4.

In this section, we focus on a question of independent interest and importance:
what can happen if the adversary figures out the ideal I? The dimension of the ideal
I used for encryptions of zero in our scheme is rather small (about 1000 with suggested
parameters), so accumulating about 1000 encryptions of zero will allow the adversary
to determine the ideal I and recognize future encryptions of zero. However, we claim
that this will not affect security of nonzero elements (which is what matters in most
real-life applications) because to decrypt correctly, one has to know not just the ideal
I itself, but also the specific map ρ (in the notation of our Section 2) that “kills” this
ideal. We illustrate this point by a simple example from linear algebra.

Suppose a linear space S has a basis {x1,x2,x3}, and a subspace I has a basis {x3 −
x1,x2 − x1}. Then, if the map from S onto S/I is given by x1 → x1,x2 → x1,x3 → x1,
then, say, the vector u = x1 + 2x2 + 3x3 will be taken to 6x1. At the same time, the
subspace I has another basis: {x3 − x1,x3 − x2}. There is also another map from S onto

S/I such that x1 → x3,x2 → x3,x3 → x3. Then the same vector u is taken to 6x3. There
are, in fact, great many different maps from S onto S/I corresponding to different bases
of I. For example, I has bases {x3 − x1,a(x3 − x1)+ b(x2 − x1)} for any nonzero a,b.
The latter element of the basis is equal to ax3 + bx2 − (a+ b)x1. Thus, if b ̸= 0, the
following map takes S onto S/I: x1 → x1,x2 → a+b

b x1 − a
b x3, x3 → x1. Then the vector

u is taken to 3b−a
b x1. Thus, in particular, any kx1 can be “decryption” of u for some ρ.

Remark 1. The above argument shows that, if plaintexts do not have a ring structure
(which is the case in most real-life applications) and therefore the embedding of plain-
texts in Sn can be just one-to-one but not necessarily a full homomorphism, then essen-
tially any k ∈ Zp can be decryption of the same given u ∈ Sr.

Moreover, knowing an encryption of the element 1 of the ring Zp (or any other
element, for that matter) does not help the adversary to decrypt other elements correctly
– again because the initial embedding α : Zp → Sn is not a homomorphism, so that
there is no algebraic correlation between encryption of, say, one credit card number
and another. That said, since a one-to-one embedding of plaintexts in Sn is part of the
private key, it has to have a description of a reasonable size, much smaller than the size
of the plaintext database itself. We do not address this issue here, focusing on less trivial
issues instead.

Remark 2. If plaintexts do have a ring structure, then the element 1 of the ring Zp
should be first mapped to an idempotent u of the ring Sn; this map then extends to a
fully homomorphic embedding of Zp into Sn by the homomorphism property. Then an
encryption of the element k ∈ Zp will be of the form ku+ e, where e ∈ I. A computa-
tionally unbounded adversary who knows the ideal I can then use the following brute
force attack on a ciphertext. Knowing that a ciphertext is of the form ku+ e, the adver-
sary can go over all elements m ∈ Zp one at a time, divide the ciphertext ku+ e by m
and check whether the result is an idempotent modulo the ideal I. If it is, then it must
be of the form v = u+ e′, where e′ ∈ I. Knowing this and using the homomorphism
property of the encryption, a computationally unbounded adversary can then recognize
encryption of any element of Zp as follows. Given a ciphertext w, the adversary can go
over all elements m ∈ Zp one at a time until she finds m such that mv−w ∈ I. Then w
must be an encryption of this m.

8 Private search

We now recall how FHE is typically used for private search on an encrypted database;
this functionality appears to be in high demand.

Suppose Alice (the data owner) wants to find out whether or not E(x) is in the
encrypted database E(D). Recall that the encryption E(x) has to be randomized, which
means that every time Alice encrypts the same x the result looks different. This deprives
the database keeper Carl (e.g. the cloud) from just matching E(x) to elements of the
encrypted database. Instead, Carl does the following. For each element E(y) of the
database, he computes E(x)−E(y), which is equal to E(x− y) modulo the ideal I that
is used for encryptions of 0 (see our Section 2). Then he computes the product

P(x) = ΠE(y)∈E(D)(E(x)−E(y)) = ΠE(y)∈E(D)E(x− y)

over all elements of the database E(D) and sends P(x) to Alice. Since the encryption
function E respects the multiplication, too, the element P(x) is equal to E(ΠE(y)∈E(D)(x−
y)) modulo the ideal I. Alice then decrypts this element to recover ΠE(y)∈E(D)(x− y).
If all plaintexts y are elements of a field (or more generally, of a ring without zero divi-
sors), then the latter product is equal to 0 if and only if x = y for at least one y such that
E(y) is stored in the database E(D). Thus, Alice will know whether or not E(x) is in
the database E(D), although this will not tell her how many occurrences of E(x) there
are in E(D) (in case there are some).

The same method can be used if plaintexts are elements of a ring with zero divisors,
provided that there are “not too many” of them, meaning that the probability to have
ab = 0 for nonzero a,b is negligible. Thus, we are allowing a negligible probability of a
“false positive” response to a query, while the probability of a “false negative” response
is 0 since ab ̸= 0 implies a ̸= 0 and b ̸= 0.

In our situation, the ring Sn is isomorphic to a direct sum of 2n copies of Zp. There-
fore, to have Πui = 0 for nonzero ui, one should have a 0 (in one direct summand
or another) in each of the 2n components. Assuming that each element of Zp in each
component is (approximately) equally likely to occur, we have the probability of ap-
proximately 1

p for having 0 in a particular component. Thus, if we have a product of N
elements ui, the probability to have 0 in a particular component of the product Πui is
bounded above by N

p . Then the probability to have 0 in every component of the product
is bounded above by (N

p)
2n

. Thus, if N is less than p, this probability tends to be quite
small. With our tested parameters, p is on the order of 230 and n = 7, so with N up to,
say, 227 ≈ 108, the probability of a “false positive” response is really small. Of course,
the above argument is informal (in particular, it is not clear how close to uniform the
distribution of elements of Zp in each component is), but it gives a ballpark estimate of
the probability of a “false positive” response. In fact, in our computer experiments with
N ≈ 106 multiplications, we never had a “false positive” response.

8.1 Third party private search

Despite the fact that our encryption is private-key and we do not give access to the
encryption mechanism to any third party, we show below that a third party is still able
to do private search on a privately encrypted database. This functionality is quite useful
in scenarios similar to the following. Suppose one agency owns a list of names (e.g. a
“no-fly list”) that they do not want to share with anybody. Then another agency (or a
company) wants to check whether a particular name is on this list, but they do not want
to reveal the name.

Let Alice be the owner of the original (plaintext) database D, Carl the keeper of the
encrypted (by Alice) database E(D), and Bob the third party who wants to do private
search on E(D). In doing so, Bob does not want Alice (or anybody else) to know what
he is looking for. At the same time, Alice does not want to share with Bob (or anybody
else) her private encryption/decryption key. She would have to share though the way
that real-life data are encoded by elements of the ring R = Sn. That is, she would have
to share the map α in the notation of our Section 2.

The following protocol solves this problem. Recall that plaintexts are embedded in
Sn, and the encrypted database E(D) is a subset of Sr, r > n. We naturally identify Sn
with the factor ring Sr/I, where the ideal I of Sr is used for encryptions of 0, see Section
5. If Alice wants to allow for a third party search on E(D), she will have to publish E(D)
using the orthogonal basis of Sr+k for some k ≥ 1 because the orthogonal basis of Sr
does not extend to the orthogonal basis of Sr+k, and the third party will need the “extra”
k ≥ 1 generators xi to do their private encryption.

Now suppose Bob encodes his real-life plaintext by an element x ∈ Sn (the way to
do it should be shared by Alice) and wants to find out whether an encryption of x is
in the encrypted database E(D), but he does not want to reveal x to Alice (or anybody
else). Here is how he can do that.

1. Denote by S′ = Sr+1 the ring generated by x1, . . . ,xr,xr+1. Bob selects an element
of the form xr+1 −wb(x1, . . . ,xn), where wb is an idempotent, and let J be the ideal
of S′ generated (as an ideal of S′) by this element.

2. Bob encrypts x as EB(x) = x+ g, where g is a random element of the ideal J of
the ring S′, as above. Bob then sends EB(x) to Alice. Note that EB(x) is expressed
in terms of the “standard” generators xi since Bob does not know how exactly the
standard basis of Sr+1 is to be converted to the orthogonal basis – this is part of
Alice’s private key.

3. Alice encrypts EB(x) as EA(EB(x)) = EB(x)+ h, where h is a random element of
the ideal I of the ring Sr. The element EB(x)+h is expressed in terms of the public
basic elements ei of Sr+1 before Alice sends it to Carl.

4. Carl (the encrypted database keeper) returns to Alice the product (see the beginning
of Section 8)
P(x) = ΠE(y)∈E(D)(EA(EB(x))−EA(y)) = Πy∈DEA(EB(x)− y) =
= EA(Πy∈D(EB(x)− y)).
These equalities are modulo the image of the ideal I + J in the ring Sr+1.

5. Alice decrypts P(x) with her decryption key and gets Q(x) = Πy∈D(EB(x)− y)
(modulo the ideal J), expressed in terms of the standard generators x1, . . . ,xn,xr+1.
She then sends Q(x) to Bob.

6. Bob decrypts Q(x) by replacing xr+1 with wb(x1, . . . ,xn) and gets Πy∈D(x−y). (See
Remark 3 below for an explanation of why he actually gets this.) With overwhelm-
ing probability, the latter product is equal to 0 if and only if x = y for at least one
y.

Remark 3. Recall that Q(x) = Πy∈D(EB(x)− y). This can be re-written as
Πy∈D(x+ g− y), since EB(x) = x+ g, where g is an element of the ideal J. Decrypt-
ing Q(x) amounts to “killing” the ideal J by replacing xr+1 with wb(x1, . . . ,xr). This
“kills” g but does not change x or y since these elements do not involve xr+1. Therefore,
decrypting Q(x) indeed produces Πy∈D(x− y).

Remark 4. The same method can be used by the database owner to protect the ideal
I from exposure during queries against the encrypted database. Every time a query is
made, a different ideal J can be used to encrypt 0, thus hiding the “core” ideal I.

9 Performance

• With our suggested parameters, encryption of a single plaintext (i.e., of an element
of S7) takes 37 microseconds, hence encryption of a million plaintexts takes about 37
seconds. A single plaintext (with the suggested parameters) has size 3840 bits. This,
however, is not so important as far as real-life applications are concerned since encryp-
tion is a “one-time thing”. What matters is the speed of computation on encrypted data,
see the next bullet point.

• We do one million multiplications of encrypted elements (in the orthogonal basis
of S10) in 2 sec on a regular laptop computer, without any optimization or paralleliza-
tion. A recent improvement on Gentry’s algorithm [4] (tacitly) implies a single mul-
tiplication in about 0.7 sec, hence a million multiplications in about 700,000 seconds,
which means we do it roughly 350,000 times faster.

• Private search on an encrypted database with a million entries takes 3.6 sec. on a
regular laptop computer, again without any optimization or parallelization.

10 Conclusions

• We described a practical private-key fully homomorphic encryption scheme based
on rings and showed that it provides for efficient computation on encrypted data.

• Even though our encryption is private-key and we do not give access to the en-
cryption mechanism to any third party, a third party is still able to do private search on
a privately encrypted database.

• One of the main distinctive features of our scheme is the presence of an orthogo-
nal basis of idempotent elements in the public ring. The fact that it is orthogonal makes
multiplication of encrypted elements (the main stumbling point in other schemes) ex-
tremely efficient.

• Our encryption scheme is unconditionally secure against ciphertext-only attack.
• Typically, security of FHE schemes rests on masking encryptions of 0 by “noise”.

In any scheme, accumulating sufficiently many encryptions of 0 leads to the ability to
recognize other encryptions of 0. What happens in most ring-based FHE schemes is that
the speed of multiplication of encrypted elements grows linearly with the dimension of
the ideal used for encryptions of 0. This is also the case with our scheme. However,
in contrast with other schemes, recovering the ideal used for encryptions of 0 in our
scheme does not recover the decryption key, and nonzero elements remain secure.

References

1. Z. Brakerski, C. Gentry and V. Vaikuntanathan, (Leveled) fully homomorphic encryption
without bootstrapping, in: ITCS 2012 – Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pp. 309–325.

2. Z. Brakerski and V. Vaikuntanathan, Efficient fully homomorphic encryption from (stan-
dard) LWE. In: FOCS 2011, 97-106, IEEE Computer Soc., Los Alamitos, CA, 2011.

3. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, Fully homomorphic encryp-
tion over the integers. In: Advances in Cryptology – EUROCRYPT 2010, Lecture Notes
Comput. Sci. 6110 (2010), 24-43.

4. L. Ducas and D. Micciancio, FHE Bootstrapping in less than a second, in: Advances in
Cryptology – EUROCRYPT 2015, Lecture Notes Comput. Sci. 9056, 617–640.

5. C. Gentry, Fully homomorphic encryption using ideal lattices. In: STOC 09: Proceedings
of the 41st annual ACM Symposium on Theory of Computing, pp. 169-178. ACM, New
York, NY, USA (2009).

6. D. Grigoriev, I. Ponomarenko, Homomorphic public-key cryptosystems over groups and
rings, Quaderni di Matematica 13 (2004), 305–326.

7. S. Halevi and V. Shoup, HElib - An Implementation of homomorphic encryption.
https://github.com/shaih/HElib/

8. S. Halevi and V. Shoup, Algorithms in HElib, in: CRYPTO 2014, Lecture Notes Computer
Sci. 8616, 554–571.

