Why coalgebras?
Generalizations of results on Frobenius algebras, Hopf algebras and compact groups via co-representation theory, and applications

Miodrag C Iovanov
University of Southern California, LA

CUNY Graduate Center
April 2010
K-algebra A

$m : A \otimes A \to A$ & $u : K \to A$

- $A \otimes A \otimes A \xrightarrow{m \otimes \text{Id}_A} A \otimes A$
- $A \otimes A \xrightarrow{m} A$

- $\text{Id}_A \otimes m$
- m

K-coalgebra C

$\Delta : C \to C \otimes C$ & $\varepsilon : C \to K$

- $C \otimes C \otimes C \xleftarrow{\Delta \otimes \text{Id}_C} C \otimes C$
- $C \otimes C \xleftarrow{\Delta} C$

- $\text{Id}_C \otimes \Delta$
- Δ

Miodrag C Iovanov

Gen Frobenius Alg. and Integrals
A-module: \(M \) with an \(A \)-action \(A \otimes M \to M, \ (a, m) \mapsto a \cdot m \)

C-comodule: \(M \) with a \(C \)-coaction \(\rho : M \to M \otimes C, \ \rho(m) = \sum_i m_i \otimes c_i \)
Modules and Comodules (actions and coactions)

A-module: M with an A - action $A \otimes M \rightarrow M$, $(a, m) \mapsto a \cdot m$

C-comodule: M with a C - coaction $\rho : M \rightarrow M \otimes C$, $\rho(m) = \sum_i m_i \otimes c_i$

and, of course, some compatibility conditions: associative and unital for modules, “coassociative and counital” for comodules

One defines morphisms of comodules, by duality with the definition of morphisms of modules.
Let \(\eta : A \to \text{End}(V) \) a finite dimensional representation, \(v_i \) a basis of \(V \). Then \(\eta(a) = (a_{ij}) \). Denote \(\eta_{ij}(a) = a_{ij} \) and \(\eta(ab) = \eta(a)\eta(b) \) reads

\[
\eta_{ij}(ab) = \sum_k \eta_{ik}(a)\eta_{kj}(b).
\]

R\((A) = \{ f : A \to K \mid f(ab) = \sum_i g_i(a)h_i(b) \text{ for some } g_i, h_i : A \to K \}\) = \(A_0\)

We have \(m^* : A^* \to (A \otimes A)^* \supseteq A^* \otimes A^* \), and \(R(A) = (m^*)^{-1}(A^* \otimes A^*) \)

Closely related situation: \(G \) - a (topological) group and \(\eta : G \to \text{Gl}_n(V) \) a (continuous) representation over \(\mathbb{C} \).

Gen Frobenius Alg. and Integrals
Let $\eta : A \rightarrow \text{End}(V)$ a finite dimensional representation, v_i a basis of V. Then $\eta(a) = (a_{ij})$. Denote $\eta_{ij}(a) = a_{ij}$ and $\eta(ab) = \eta(a)\eta(b)$ reads

$$\eta_{ij}(ab) = \sum_k \eta_{ik}(a)\eta_{kj}(b).$$

$$R(A) = \{ f : A \rightarrow K \mid f(ab) = \sum_i g_i(a)h_i(b) \text{ for some } g_i, h_i : A \rightarrow K \} = A^0$$

We have $m^* : A^* \rightarrow (A \otimes A)^* \supseteq A^* \otimes A^*$, and $R(A) = (m^*)^{-1}(A^* \otimes A^*)$
Let $\eta : A \to \text{End}(V)$ a finite dimensional representation, v_i a basis of V. Then $\eta(a) = (a_{ij})$. Denote $\eta_{ij}(a) = a_{ij}$ and $\eta(ab) = \eta(a)\eta(b)$ reads:

$$\eta_{ij}(ab) = \sum_k \eta_{ik}(a)\eta_{kj}(b).$$

$$R(A) = \{ f : A \to K \mid f(ab) = \sum_i g_i(a)h_i(b) \text{ for some } g_i, h_i : A \to K \} = A^0$$

We have $m^* : A^* \to (A \otimes A)^* \supseteq A^* \otimes A^*$, and $R(A) = (m^*)^{-1}(A^* \otimes A^*)$

Closely related situation: G - a (topological) group and $\eta : G \to \text{Gl}_n(V)$ a (continuous) representation over \mathbb{C}.
So for $f \in R(A)$, well determined $\sum g_i \otimes h_i \in A^* \otimes A^*$; by standard linear algebra, in fact $\sum g_i \otimes h_i \in R(A) \otimes R(A)$, giving a comultiplication of $R(A)$.

counit: $\varepsilon(f) = f(1)$.
So for $f \in R(A)$, well determined $\sum_i g_i \otimes h_i \in A^* \otimes A^*$; by standard linear algebra, in fact $\sum_i g_i \otimes h_i \in R(A) \otimes R(A)$, giving a comultiplication of $R(A)$.

counit: $\varepsilon(f) = f(1)$.

Coalgebra of representative functions or **Finite dual coalgebra** $R(A)$
So for $f \in R(A)$, well determined $\sum g_i \otimes h_i \in A^* \otimes A^*$; by standard linear algebra, in fact $\sum g_i \otimes h_i \in R(A) \otimes R(A)$, giving a **comultiplication** of $R(A)$.

Coalgebra of representative functions or Finite dual coalgebra $R(A)$

Proposition

$R(A)$ is spanned by all η_{ij}, $\eta : A \to \text{End}(V)$, v_i basis; also $f \in R(A) \iff \ker(f)$ contains a two-sided ideal of finite codimension.
To any $\eta : A \rightarrow \text{End}(V)$ representation (f.d. left A-module) associate a right $R(A)$-comodule V

$$v_i \mapsto \sum_j v_j \otimes \eta_{ji}$$

Conversely, to a right $R(A)$-comodule V, $\rho : V \rightarrow V \otimes R(A)$, write $\rho(v_i) = \sum_j v_j \otimes f_{ji}$ associate the left A-action

$$a \cdot v_i = \sum_i f_{ji}(a) v_j$$

$f : V \rightarrow W$ morphism of A-modules iff $R(A)$-comodules.
To any $\eta : A \rightarrow \text{End}(V)$ representation (f.d. left A-module) associate a right $R(A)$-comodule V

$$v_i \mapsto \sum_j v_j \otimes \eta_{ji}$$

Conversely, to a right $R(A)$-comodule V, $\rho : V \rightarrow V \otimes R(A)$, write $\rho(v_i) = \sum_j v_j \otimes f_{ji}$ associate the left A-action

$$a \cdot v_i = \sum_i f_{ji}(a)v_j$$

$f : V \rightarrow W$ morphism of A-modules iff $R(A)$-comodules.

Theorem

The categories $f.d.A$-mod and comod-$R(A)$ are equivalent.
Coalgebras, comodules, rational modules

C-coalgebra $\Rightarrow C^*$ is an algebra with the **convolution product**:

$$(f * g)(c) = \sum_i f(a_i)g(b_i), \text{ where } \Delta(c) = \sum_i a_i \otimes b_i$$
Coalgebras, comodules, rational modules

C-coalgebra $\Rightarrow C^*$ is an algebra with the \textbf{convolution product}:

$$(f \ast g)(c) = \sum_i f(a_i)g(b_i), \text{ where } \Delta(c) = \sum_i a_i \otimes b_i$$

comod-$C \hookrightarrow C^*$-mod: for $m \in (M, \rho : M \rightarrow M \otimes C)$, $f \in C^*$ define

$$f \ast m = \sum_i f(c_i)m_i \text{ where } \sum_i m_i \otimes c_i = \rho(m).$$

(note: above $= \text{the same for } A \rightarrow R(A)^*$ morphism of algebras)
C-coalgebra $\Rightarrow C^*$ is an algebra with the **convolution product:**

$$(f * g)(c) = \sum_i f(a_i)g(b_i), \text{ where } \Delta(c) = \sum_i a_i \otimes b_i$$

comod-C $\hookrightarrow C^*$-mod: for $m \in (M, \rho : M \to M \otimes C)$, $f \in C^*$ define

$$f * m = \sum_i f(c_i)m_i \text{ where } \sum_i m_i \otimes c_i = \rho(m).$$

(note: above = the same for $A \to R(A)^*$ morphism of algebras)

C-comodules are called rational C^*-modules. Also, for any C^*-module M, define $\text{Rat}(M) =$ the largest rational submodule of M.
The Fundamental Theorem of Coalgebras

Theorem

A f.g. rational C^*-(bi)module is finite dimensional.
The Fundamental Theorem of Coalgebras

Theorem

A f.g. rational C^*-(bi)module is finite dimensional.

So, any rational module is the sum of its finite dimensional submodules, and a coalgebra is the sum of finite dimensional subcoalgebras.
The Fundamental Theorem of Coalgebras

Theorem

A f.g. rational C^*-(bi)module is finite dimensional.

So, any rational module is the sum of its finite dimensional submodules, and a coalgebra is the sum of finite dimensional subcoalgebras.

So $C = \lim_{\to} C_i$, C_i-finite dimensional $\Rightarrow C^* = \lim_{\leftarrow} C_i^*$, a **profinite algebra**.

In close analogy to profinite groups:
Theorem

The following is equivalent for an algebra A:

• A is profinite ($A = \lim_{\leftarrow} A_i$, A_i f.d.)

• A is pseudocompact, i.e. it is a Hausdorff and complete topological algebra with a basis of nbhds of 0, consisting of ideals of finite codimension.

• $A = C^*$, for some coalgebra C.

Moreover, in this situation, the category of right C-comodules is in duality with that of pseudocompact right A-modules.

C-coalgebra: $C = \bigoplus_{i} E(S_i)^n_i$ in mod-C^*; $A = C^* = \prod_{i} E(S_i)^* n_i$ in C^*-mod; $E(S_i)$-injective indecomposable with simple socle; $E(S_i)^*$ (principal) projective indecomposable & local.
Theorem

The following is equivalent for an algebra A:

- A is **profinite** ($A = \lim \leftarrow A_i, A_i$ f.d.)
- A is **pseudocompact**, i.e. it is a Hausdorff and complete topological algebra with a basis of nbhds of 0, consisting of ideals of finite codimension.
- $A = C^*$, for some coalgebra C.
Theorem

The following is equivalent for an algebra A:

- A is **profinite** ($A = \varprojlim A_i$, A_i f.d.)
- A is **pseudocompact**, i.e. it is a Hausdorff and complete topological algebra with a basis of nbhds of 0, consisting of ideals of finite codimension.
- $A = C^*$, for some coalgebra C.

Moreover, in this situation, the category of right C-comodules is in duality with that of **pseudocompact** right A-modules.
The following is equivalent for an algebra A:

- A is **profinite** ($A = \lim_{\leftarrow} A_i$, A_i f.d.)
- A is **pseudocompact**, i.e. it is a Hausdorff and complete topological algebra with a basis of nbhds of 0, consisting of ideals of finite codimension.
- $A = C^*$, for some coalgebra C.

Moreover, in this situation, the category of right C-comodules is in duality with that of **pseudocompact** right A-modules.

C-coalgebra: $C = \bigoplus E(S_i)^{n_i}$ in mod-C^*;

$A = C^* = \prod_i E(S_i)^{* n_i}$ in C^*-mod;

$E(S_i)$-injective indecomposable with simple socle;

$E(S_i)^*$ (principal) projective indecomposable & local.
The development of the theory of infinite dimensional Frobenius algebras

An algebra \(A \) called Frobenius if \(A \cong A^\ast \) as left \(A \)-modules. The definition comes from an old problem raised by Frobenius and who's solution leads to this equivalent characterization. Such algebras generalize the classical case: \(A = KG \), \(G \) finite group.

- Maschke: \(K = \mathbb{C} \) (or \(\text{char}(K) \not | |G| \)), \(CG \) semisimple.
- Otherwise not, but still \(KG \) Frobenius!
An algebra A called Frobenius if $A \simeq A^*$ as left A-modules. The definition comes from an old problem raised by Frobenius and who’s solution leads to this equivalent characterization.
An algebra A called Frobenius if $A \cong A^*$ as left A-modules. The definition comes from an old problem raised by Frobenius and who’s solution leads to this equivalent characterization.

Such algebras generalize the classical case: $A = KG$, G finite group.

- Maschke: $K = \mathbb{C}$ (or $\text{char}(K) \nmid |G|$), $\mathbb{C}G$ semisimple.
- Otherwise not, but still KG Frobenius!
Frobenius Algebras

Frobenius’ question arises naturally as follows: for a finite dimensional K-algebra A with basis e_1, \ldots, e_n
Frobenius’ question arises naturally as follows: for a finite dimensional K-algebra A with basis e_1, \ldots, e_n

- $\varphi_r : A \longrightarrow \text{End}_K(A); \quad \varphi_r(a) = x \mapsto ax$ - morphism of K-algebras. $a \cdot e_i = \sum_{j=1}^{n} a_{ij}e_j$. Then

$A \ni a \mapsto \alpha(a) = (a_{ij})_{i,j} \in M_n(K)$ is a morphism of algebras.
Frobenius’ question arises naturally as follows: for a finite dimensional K-algebra A with basis e_1, \ldots, e_n
\begin{itemize}
 \item $\varphi_r : A \longrightarrow \text{End}_K(A)$; $\varphi_r(a) = x \mapsto ax$ - morphism of K-algebras. $a \cdot e_i = \sum_{j=1}^{n} a_{ij}e_j$. Then
 \begin{align*}
 A \ni a &\mapsto \alpha(a) = (a_{ij})_{i,j} \in M_n(K) \text{ is a morphism of algebras}
 \\
 A \ni a &\mapsto \beta(a) = (x \mapsto xa) - \text{antimorphism of algebras}
 \\
 e_i \cdot a &= \sum_{j} b_{ji}e_j; \text{ again } A \ni a \mapsto \beta(a) = (b_{ij})_{i,j} \in M_n(K) \text{ is a morphism of algebras.}
\end{align*}
\end{itemize}
Frobenius Algebras

Frobenius’ question arises naturally as follows: for a finite dimensional K-algebra A with basis e_1, \ldots, e_n

- $\varphi_r : A \longrightarrow \text{End}_K(A); \varphi_r(a) = x \mapsto ax$ - morphism of K-algebras. $a \cdot e_i = \sum_{j=1}^{n} a_{ij}e_j$. Then $A \ni a \mapsto \alpha(a) = (a_{ij})_{i,j} \in M_n(K)$ is a morphism of algebras.

- $\varphi_l : A \longrightarrow \text{End}_K(A), \varphi_l(a) = (x \mapsto xa)$ - antimorphism of algebras.

- $e_i \cdot a = \sum_j b_{ji}e_j$; again $A \ni a \mapsto \beta(a) = (b_{ij})_{i,j} \in M_n(K)$ is a morphism of algebras.

- Frobenius’ question: when are the two representations α, β equivalent:

 when $\exists S \in M_n(K)$ such that $\beta(a) = S^{-1}\alpha(a)S, \forall a \in A$?.
Co-Frobenius coalgebras

Definition

A coalgebra C is called right (left) co-Frobenius if there is a monomorphism $C \hookrightarrow C^*$ of right (left) C^*-modules. C is called co-Frobenius if it is both left and right co-Frobenius.
Co-Frobenius coalgebras

Definition
A coalgebra C is called right (left) co-Frobenius if there is a monomorphism $C \hookrightarrow C^*$ of right (left) C^*-modules. C is called co-Frobenius if it is both left and right co-Frobenius.

Definition
A coalgebra C is called right (left) quasi-co-Frobenius, or shortly right QcF coalgebra, if there is a monomorphism $C \hookrightarrow (C^*)^{(l)}$ of right (left) C^*-modules. C is called QcF coalgebra if it is both left and right QcF coalgebra.
• A Frobenius algebra is finite dimensional.

• A "left" Frobenius (QF) algebra is also "right" Frobenius (QF).

• A left co-Frobenius (QcF) coalgebra is not necessarily right co-Frobenius (QcF).

• A Hopf algebra is left co-Frobenius iff it is right co-Frobenius.

• A C-finite dimensional coalgebra is co-Frobenius if and only if C^* is Frobenius.

• Also C finite dimensional coalgebra is QcF iff C^* is a QF ring, i.e. artinian and self-injective (and then also cogenerator) \iff "injectives=projectives".

• C QcF \iff C is a projective generator in comodules (or C-comod).

Miodrag C Iovanov
Gen Frobenius Alg. and Integrals
A Frobenius algebra is finite dimensional.
A Frobenius algebra is finite dimensional.

A ”left” Frobenius (QF) algebra is also ”right” Frobenius (QF).
A Frobenius algebra is finite dimensional.

A “left” Frobenius (QF) algebra is also “right” Frobenius (QF).

A left co-Frobenius (QcF) coalgebra is not necessarily right co-Frobenius (QcF).
(Co)Frobenius & Q(c)F algebras and coalgebras

- A Frobenius algebra is finite dimensional.
- A "left" Frobenius (QF) algebra is also "right" Frobenius (QF).
- A left co-Frobenius (QcF) coalgebra is not necessarily right co-Frobenius (QcF).
- A Hopf algebra is left co-Frobenius iff it is right co-Frobenius.
A Frobenius algebra is finite dimensional.
A "left" Frobenius (QF) algebra is also "right" Frobenius (QF).
A left co-Frobenius (QcF) coalgebra is not necessarily right co-Frobenius (QcF).
A Hopf algebra is left co-Frobenius iff it is right co-Frobenius.
A finite dimensional coalgebra is co-Frobenius if and only if C^* is Frobenius.
(Co)Frobenius & Q(c)F algebras and coalgebras

- A Frobenius algebra is finite dimensional.
- A "left" Frobenius (QF) algebra is also "right" Frobenius (QF).
- A left co-Frobenius (QcF) coalgebra is not necessarily right co-Frobenius (QcF).
- A Hopf algebra is left co-Frobenius iff it is right co-Frobenius.
- C - finite dimensional coalgebra - is co-Frobenius if and only if C^* is Frobenius.
- Also C finite dimensional coalgebra is QcF iff C^* is a QF ring, i.e. artinian and self-injective (& then also cogenerator) $⇔$ “injectives=projectives”.
- A Frobenius algebra is finite dimensional.
- A "left" Frobenius (QF) algebra is also "right" Frobenius (QF).
- A left co-Frobenius (QcF) coalgebra is not necessarily right co-Frobenius (QcF).
- A Hopf algebra is left co-Frobenius iff it is right co-Frobenius.
- A finite dimensional coalgebra - is co-Frobenius if and only if C^* is Frobenius.
- Also C finite dimensional coalgebra is QcF iff C^* is a QF ring, i.e. artinian and self-injective (and then also cogenerator) \iff "injectives=projectives".
- C coalgebra is left QcF iff C is projective as left C^*-module. In this case, C is also a generator for rational C-comodules & C^* is right self-injective!
A Frobenius algebra is finite dimensional.

A ”left” Frobenius (QF) algebra is also ”right” Frobenius (QF).

A left co-Frobenius (QcF) coalgebra is not necessarily right co-Frobenius (QcF).

A Hopf algebra is left co-Frobenius iff it is right co-Frobenius.

A finite dimensional coalgebra is co-Frobenius if and only if its dual is Frobenius.

Also a finite dimensional coalgebra is QcF iff its dual is a QF ring, i.e. artinian and self-injective (→ then also cogenerator) ⇔ “injectives=projectives”.

A coalgebra is left QcF iff it is projective as left dual-module. In this case, C is also a generator for rational C-comodules & its dual is right self-injective!

C is QcF iff C is a projective generator in comod-C (or C-comod).
The Weak Isomorphism

Definition

(i) Let \mathcal{C} be a category having products. We say that $M, N \in \mathcal{C}$ are weakly π-isomorphic if and only if there are some sets I, J such that $M^I \simeq N^J$; we write $M \overset{\pi}{\sim} N$.

(ii) Let \mathcal{C} be a category having coproducts. We say that $M, N \in \mathcal{C}$ are weakly σ-isomorphic if and only if there are some sets I, J such that $M(I) \simeq N(J)$; we write $M \overset{\sigma}{\sim} N$.
The Weak Isomorphism

Definition

(i) Let C be a category having products. We say that $M, N \in C$ are weakly π-isomorphic if and only if there are some sets I, J such that $M^I \simeq N^J$; we write $M \overset{\pi}{\sim} N$.

(ii) Let C be a category having coproducts. We say that $M, N \in C$ are weakly σ-isomorphic if and only if there are some sets I, J such that $M^{(I)} \simeq N^{(J)}$; we write $M \overset{\sigma}{\sim} N$.
Quasi-co-Frobenius Coalgebras: One Main Result

Theorem

Let C be a coalgebra. Then the following assertions are equivalent.

(i) C is a QcF coalgebra.

(ii) $C_{\sigma} \cong \text{Rat}(C^*)$ or $C_{\pi} \cong \text{Rat}(C^*)$ in C_M.

(iii) $C(N) \cong \text{Rat}(C^*)(N)$ or $C_{\prod N} \cong C_{\prod N} \text{Rat}(C^*)$.

(iv, v) The left hand side version of (ii), (iii).
Theorem

Let C be a coalgebra. Then the following assertions are equivalent.

(i) C is a QcF coalgebra.
Theorem

Let C be a coalgebra. Then the following assertions are equivalent.

(i) C is a QcF coalgebra.

(ii) $C \overset{\sigma}{\sim} \text{Rat}(C^*)$ or $C \overset{\pi}{\sim} \text{Rat}(C^*)$ in \mathcal{CM}
Quasi-co-Frobenius Coalgebras: One Main Result

Theorem

Let C be a coalgebra. Then the following assertions are equivalent.

(i) C is a QcF coalgebra.

(ii) $C \overset{\sigma}{\sim} \text{Rat}(C^*)$ or $C \overset{\pi}{\sim} \text{Rat}(C^*)$ in \mathcal{CM}

(iii) $C^{(\mathbb{N})} \overset{\sim}{\sim} (\text{Rat}(C^*))^{(\mathbb{N})}$ or $\prod_{\mathbb{N}} C \overset{\sim}{\sim} \prod_{\mathbb{N}} \text{Rat}(C^*)$
Theorem

Let C be a coalgebra. Then the following assertions are equivalent.

(i) C is a QcF coalgebra.

(ii) $C \overset{g}{\sim} \text{Rat}(C^*)$ or $C \overset{\pi}{\sim} \text{Rat}(C^*)$ in \mathcal{CM}

(iii) $C^{(\mathbb{N})} \overset{\sim}{\simeq} (\text{Rat}(C^*))^{(\mathbb{N})}$ or $\prod_{\mathbb{N}} C \overset{\sim}{\simeq} \prod_{\mathbb{N}} \text{Rat}(C^*)$

(iv, v) The left hand side version of (ii), (iii).
Applications: Co-Frobenius coalgebras

Theorem

A coalgebra C is co-Frobenius if and only if $C \cong \text{Rat}(C^* C^*)$ as left C^*-modules, if and only if $C \cong \text{Rat}(C_{C^*}^*)$ as right C^*-modules.

• A-finite dimensional is Frobenius $\iff A \cong A^*$.
• A-profinite, $A = C^*$ then C is co-Frobenius $\iff C \cong \text{Rat}(C^*)$. In this situation we have $A \cong A^\vee$ as left (or right) A-modules! Here $A^\vee = \text{topological completion of } \text{Hom}_{\text{cont}}(A, K)$.
• A-profinite, $A = C^*$ then C is Quasi-co-Frobenius $\iff C_{\sigma, \pi} \cong \text{Rat}(C^*)$. In this situation, $A^\pi \cong A^\vee$.

Miodrag C Iovanov ()
Gen Frobenius Alg. and Integrals
Applications: Co-Frobenius coalgebras

Theorem

A coalgebra C is co-Frobenius if and only if $C \cong \text{Rat}(C^* C^*)$ as left C^*-modules, if and only if $C \cong \text{Rat}(C^*_C)$ as right C^*-modules.

- A-finite dimensional is Frobenius $\iff A \cong A^*$.
- A-profinite, $A = C^*$ then C is co-Frobenius $\iff C \cong \text{Rat}(C^*)$. In this situation we have $A \cong A^\vee$ as left (or right) A-modules! Here $A^\vee =$ topological completion of $\text{Hom}_{\text{cont}}(A, K)$.
- A-profinite, $A = C^*$ then C is Quasi-co-Frobenius $\iff C \overset{\sigma,\pi}{\sim} \text{Rat}(C^*)$. In this situation, $A \overset{\pi}{\sim} A^\vee$!
Theorem

Let C be a coalgebra. Then the following assertions are equivalent:

(i) C is co-Frobenius.

(ii) The functors $\text{Hom}_{C^*}(-, C^*) : C\text{-comod} \to C^*\text{-mod}$ and $\text{Hom}_{K}(-, K) : C\text{-comod} \to C^*\text{-mod}$ are isomorphic in the category of functors from $C\text{-comod}$ to $C^*\text{-mod}$.

Theorem

Let C be a coalgebra. Then the following assertions are equivalent:

(i) C is QcF.

(ii) The functors $\text{Hom}_{C^*}(-, C^*) : C\text{-comod} \to C^*\text{-mod}$ and $\text{Hom}_{K}(-, K) : C\text{-comod} \to C^*\text{-mod}$ are weakly isomorphic in the category of functors from $C\text{-comod}$ to $C^*\text{-mod}$.
Theorem

Let C be a coalgebra. Then the following assertions are equivalent:

(i) C is co-Frobenius.
Categorical characterizations

Theorem

Let C be a coalgebra. Then the following assertions are equivalent:

(i) C is co-Frobenius.

(ii) The functors $\Hom_{C^*}(-, C^*) : C\text{-comod} \to C^*\text{-mod}$ and $\Hom(-, K) : C\text{-comod} \to C^*\text{-mod}$ are isomorphic in the category of functors from $C\text{-comod}$ to $C^*\text{-mod}$.
Categorical characterizations

Theorem

Let C be a coalgebra. Then the following assertions are equivalent:

(i) C is co-Frobenius.

(ii) The functors $\text{Hom}_{C^*}(-, C^*) : C\text{-comod} \to C^*\text{-mod}$ and $\text{Hom}(-, K) : C\text{-comod} \to C^*\text{-mod}$ are isomorphic in the category of functors from $C\text{-comod}$ to $C^*\text{-mod}$.

Theorem

Let C be a coalgebra. Then the following assertions are equivalent:
Categorical characterizations

Theorem

Let C be a coalgebra. Then the following assertions are equivalent:

(i) C is co-Frobenius.

(ii) The functors $\text{Hom}_{C^*}(-, C^*) : C\text{-comod} \to C^*\text{-mod}$ and $\text{Hom}(-, K) : C\text{-comod} \to C^*\text{-mod}$ are isomorphic in the category of functors from $C\text{-comod}$ to $C^*\text{-mod}$.

Theorem

Let C be a coalgebra. Then the following assertions are equivalent:

(i) C is QcF.
Categorical characterizations

Theorem

Let C be a coalgebra. Then the following assertions are equivalent:

(i) C is co-Frobenius.

(ii) The functors $\text{Hom}_{C^*}(-, C^*) : C\text{-comod} \to C^*\text{-mod}$ and $\text{Hom}(-, K) : C\text{-comod} \to C^*\text{-mod}$ are isomorphic in the category of functors from $C\text{-comod}$ to $C^*\text{-mod}$.

Theorem

Let C be a coalgebra. Then the following assertions are equivalent:

(i) C is QcF.

(ii) The functors $\text{Hom}_{C^*}(-, C^*) : C\text{-comod} \to C^*\text{-mod}$ and $\text{Hom}(-, K) : C\text{-comod} \to C^*\text{-mod}$ are weakly isomorphic in the category of functors from $C\text{-comod}$ to $C^*\text{-mod}$.
Definition

H - Hopf algebra: an algebra (H, m, u) and a coalgebra (H, Δ, ε) + an antipode $S : H \to H$ s.t. $\Delta : H \to H \otimes H$ and $\varepsilon : H \to K$ are morphisms of algebras & S is convolution inverse to Id.

Example $G = \text{compact group}$, $H = \mathbb{R}(G)$ Hopf algebra, comultiplication as before, multiplication of complex functions, $S(f)(x) = \frac{1}{x} f(1)$. $\int = \text{integral of the left Haar measure}$ then $\int x \cdot f = \int f = u^* (\int)$.
Hopf Algebras

Definition

H - Hopf algebra: an algebra (H, m, u) and a coalgebra (H, Δ, ε) + an antipode $S : H \to H$ s.t. $\Delta : H \to H \otimes H$ and $\varepsilon : H \to K$ are morphisms of algebras & S is convolution inverse to Id.

$\lambda \in H^*$ left (right) integral if $\lambda : H \to K$ is a morphism of left (right) H^*-modules $(K = \text{left } H^*-\text{module by } H^* \xrightarrow{u^*} K)$. That is,

$$\lambda(h \ast g) = f(1)\lambda(g)$$
Hopf Algebras

Definition

\(H \)-Hopf algebra: an algebra \((H, m, u)\) and a coalgebra \((H, \Delta, \varepsilon)\) + an antipode \(S : H \rightarrow H\) s.t. \(\Delta : H \rightarrow H \otimes H\) and \(\varepsilon : H \rightarrow K\) are morphisms of algebras & \(S\) is convolution inverse to \(\text{Id}\).

\(\lambda \in H^*\) left (right) integral if \(\lambda : H \rightarrow K\) is a morphism of left (right) \(H^*\)-modules \((K = \text{left } H^*\text{-module by } H^* \overset{u^*}{\longrightarrow} K)\). That is,

\[
\lambda(h \ast g) = f(1)\lambda(g)
\]

Example

\(G=\text{compact group, } H = R(G)\) Hopf algebra, comultiplication as before, multiplication of complex functions, \(S(f) = (x \mapsto f(x^{-1}))\).

\(\int\) = integral of the left Haar measure then \(\int |_{R(G)} : R(G) \rightarrow \mathbb{C}\) has \(\int x \cdot f = \int f = u^*(x) \int f\) \((u : \mathbb{C} \rightarrow R(G), G \rightarrow R(G)^* \overset{u^*}{\rightarrow} \mathbb{C})\).
Theorem (Lin, Larson, Sweedler, Sullivan)

If H is a Hopf algebra, then the following assertions are equivalent.

(i) H is a right co-Frobenius coalgebra.

(ii) H is a right QcF coalgebra.

(iii) H is a right semiperfect coalgebra.

(iv) $\text{Rat} \left(H^* \otimes H^* \right) \neq 0$.

(v) $\int l \neq 0$.

(vi) $\dim \int l = 1$.

(vii) The left-right symmetric version of the above.

As a consequence of the techniques developed: a new proof of the bijectivity of the antipode.
Fundamental Results on Hopf Algebras

Theorem (Lin, Larson, Sweedler, Sullivan)

If H is a Hopf algebra, then the following assertions are equivalent.

(i) H is a right co-Frobenius coalgebra.

(ii) H is a right QcF coalgebra.

(iii) H is a right semiperfect coalgebra.

(iv) $\text{Rat}(H^*H^*) \neq 0$.

(v) $\int l \neq 0$.

(vi) $\dim \int l = 1$.

(vii) The left-right symmetric version of the above.

As a consequence of the techniques developed: a new proof of the bijectivity of the antipode.
Theorem (Lin, Larson, Sweedler, Sullivan)

If H is a Hopf algebra, then the following assertions are equivalent.

(i) H is a right co-Frobenius coalgebra.

(ii) H is a right QcF coalgebra.

As a consequence of the techniques developed: a new proof of the bijectivity of the antipode.
Theorem (Lin, Larson, Sweedler, Sullivan)

If H is a Hopf algebra, then the following assertions are equivalent.

(i) H is a right co-Frobenius coalgebra.

(ii) H is a right QcF coalgebra.

(iii) H is a right semiperfect coalgebra.
Fundamental Results on Hopf Algebras

Theorem (Lin, Larson, Sweedler, Sullivan)

If H is a Hopf algebra, then the following assertions are equivalent.

(i) H is a right co-Frobenius coalgebra.

(ii) H is a right QcF coalgebra.

(iii) H is a right semiperfect coalgebra.

(iv) $\text{Rat}(H^*H^*) \neq 0$.

(v) $\int l \neq 0$.

(vi) $\dim \int l = 1$.

(vii) The left-right symmetric version of the above.

As a consequence of the techniques developed: a new proof of the bijectivity of the antipode.
Theorem (Lin, Larson, Sweedler, Sullivan)

If H is a Hopf algebra, then the following assertions are equivalent.

(i) H is a right co-Frobenius coalgebra.
(ii) H is a right QcF coalgebra.
(iii) H is a right semiperfect coalgebra.
(iv) $\text{Rat}(H^*H^*) \neq 0$.
(v) $\int I \neq 0$.
Theorem (Lin, Larson, Sweedler, Sullivan)

If \(H \) is a Hopf algebra, then the following assertions are equivalent.

(i) \(H \) is a right co-Frobenius coalgebra.

(ii) \(H \) is a right QcF coalgebra.

(iii) \(H \) is a right semiperfect coalgebra.

(iv) \(\text{Rat}(H^*H^*) \neq 0 \).

(v) \(\int_l \neq 0 \).

(vi) \(\dim \int_l = 1 \).
Theorem (Lin, Larson, Sweedler, Sullivan)

If H is a Hopf algebra, then the following assertions are equivalent.

(i) H is a right co-Frobenius coalgebra.
(ii) H is a right QcF coalgebra.
(iii) H is a right semiperfect coalgebra.
(iv) $\text{Rat}(H^*H^*) \neq 0$.
(v) $\int_l \neq 0$.
(vi) $\dim \int_l = 1$.
(vii) The left-right symmetric version of the above.

As a consequence of the techniques developed: a new proof of the bijectivity of the antipode.
Let C - coalgebra; let M - right C-comodule. Define
\[\int_{l,M} = \text{Hom}_{\text{comod}-C}(C, M). \]
For finite dimensional comodules:
\[\int_{l,M} = \text{Hom}^C(C, M) = \text{Hom}_{C^*}(M^*, C^*). \]
Model: left integrals in a Hopf algebra, $\int_l = \text{Hom}(H, K)$ (K right comodule as before by $K \rightarrow K \otimes H$, $1 \mapsto 1 \otimes 1^H$).

- Was considered before.
- In Hopf algebras, uniqueness of integrals reads $\dim(\int_l) \leq 1 = \dim(K)$; existence (in co-Frobenius Hopf algebras) $\dim(\int_l) \geq 1 = \dim(K)$.

Calling these “spaces integrals” has roots in...
Let C - coalgebra; let M - right C-comodule. Define
\[
\int_{l,M} = \text{Hom}_{\text{comod-}C}(C, M).
\]
For finite dimensional comodules:
\[
\int_{l,M} = \text{Hom}^C(C, M) = \text{Hom}_{C^*}(M^*, C^*).
\]
Model: left integrals in a Hopf algebra, $\int_l = \text{Hom}(H, K)$ (K right comodule as before by $K \rightarrow K \otimes H$, $1 \mapsto 1 \otimes 1_H$).

- Was considered before.
- In Hopf algebras, uniqueness of integrals reads $\dim(\int_l) \leq 1 = \dim(K)$; existence (in co-Frobenius Hopf algebras) $\dim(\int_l) \geq 1 = \dim(K)$.

Calling these “spaces integrals” has roots in... **compact groups**
Compact Groups and vector valued “quantum”-invariant Integrals

G - compact group.

Note

One could think of a measure which has the feature that translation of a set U by a has a certain effect on its measure $\mu(U)$ determined by a itself (we could think that the measure of the translation of U by a depends on the measure of U in a way that is ”quantified” by a).
Compact Groups and vector valued “quantum”-invariant Integrals

G - compact group.

Note
One could think of a measure which has the feature that translation of a set U by a has a certain effect on its measure $\mu(U)$ determined by a itself (we could think that the measure of the translation of U by a depends on the measure of U in a way that is "quantified" by a).

Example

$$d\mu_t(x) = e^{itx}dx \text{ on } G = (\mathbb{R}, +)$$

$$\int_{\mathbb{R}} f(x + a)d\mu_t(x) = \int_{\mathbb{R}} f(x + a)e^{itx}dx = \int_{\mathbb{R}} (f(x)e^{it(x-a)})dx = e^{-ita}\int_{\mathbb{R}} f(x)d\mu_t(x)$$
Compact Groups and vector valued “quantum”-invariant Integrals

For general G, one would need $\int a \cdot f = \eta(a) \int f$ for some $\eta(a) \in \mathbb{C}$.

More generally, we can consider vector valued integrals $\int : R(G) \to \mathbb{C}^n$, that is,

$$\int f d\mu = \left(\begin{array}{c} \int f d\mu_1 \\ \vdots \\ \int f d\mu_n \end{array} \right)$$

and the quantum invariance $\int a \cdot f d\mu = \eta(a) \cdot \int f d\mu$, where $\eta : G \to GL_n(\mathbb{C})$.
Compact Groups and vector valued “quantum”-invariant Integrals

Note
Since \(\eta(xy) \int f = \int xy \cdot f = \eta(x) \int y \cdot f = \eta(x) \eta(y) \int f \), we can see that \(\eta \) must be a (continuous!) representation of \(G \).
Compact Groups and vector valued “quantum”-invariant Integrals

Note

Since \(\eta(xy) \int f = \int xy \cdot f = \eta(x) \int y \cdot f = \eta(x)\eta(y) \int f \), we can see that \(\eta \) must be a (continuous!) representation of \(G \).

\(V = \mathbb{C}^n \) is a (left!) rep. of \(G \) with \(\eta : G \to \text{End}(V) \) iff \(V \) is a right \(R(G) \)-comodule. Moreover, a linear map \(\varphi : V \to W \) is a morphism of \(G \)-modules iff it is a morphism of \(R(G) \)-comodules.
Compact Groups and vector valued “quantum”-invariant Integrals

Note

Since \(\eta(xy) \int f = \int xy \cdot f = \eta(x) \int y \cdot f = \eta(x) \eta(y) \int f \), we can see that \(\eta \) must be a (continuous!) representation of \(G \).

\(V = \mathbb{C}^n \) is a (left!) rep. of \(G \) with \(\eta : G \to \text{End}(V) \) iff \(V \) is a right \(R(G) \)-comodule. Moreover, a linear map \(\varphi : V \to W \) is a morphism of \(G \)-modules iff it is a morphism of \(R(G) \)-comodules.

\[\int(x \cdot f) = \eta(x) \int f = x \cdot \int(f) \], \(\Rightarrow \int \in \text{Hom}^{R(G)}(R(G), V) \) so \(\int \in \int_{l,R(G)} \).
Existence and Uniqueness of algebraic Integrals

In analogy to Hopf algebras and compact groups, we may think of the existence and uniqueness properties for integrals:

“Existence of integrals”: \(\dim(\int_{I,M}) \geq \dim(M) \) (Hopf algebras:
\(\dim(\int_{I}) \geq 1 = \dim K, \int_{I} = \int_{I,K} \ldots \))

“Uniqueness of integrals”: \(\dim(\int_{I,M}) \leq \dim(M) \) (Hopf algebras:
\(\dim(\int_{I}) \leq 1 = \dim K, \int_{I} = \int_{I,K} \ldots \))
co-Frobenius properties and integrals

Proposition

If C is left QcF then:

(i) $\int_{I,T} \neq 0$ for all rational simple left C^*-modules $T \Leftrightarrow C$ is right QcF

(ii) $\dim(\int_{I,T}) \geq \dim(T)$ for all rational simple left C^*-modules $T \Leftrightarrow C$ is right QcF.
Proposition

If C is left QcF then:

(i) $\int_{I,T} \neq 0$ for all rational simple left C^*-modules $T \iff C$ is right QcF

(ii) $\dim(\int_{I,T}) \geq \dim(T)$ for all rational simple left C^*-modules $T \iff C$ is right QcF.

Proposition

left co-Frobenius \Rightarrow uniqueness of left integrals and existence of right integrals for all finite dimensional rational modules.
Some other Main Results

Theorem

A coalgebra C is co-Frobenius (both on the left and on the right) if and only if $\dim(\int_l M) = \dim(M)$ for all finite dimensional right C-comodules M, equivalently, $\dim(\int_r N) = \dim(N)$ for all finite dimensional left C-comodules N.

Corollary

• “Another Proof for the existence and uniqueness of integrals of Hopf algebras and the equivalent characterizations”.

• Further characterizations of co-Frobenius coalgebras!
Theorem
A coalgebra C is co-Frobenius (both on the left and on the right) if and only if $\dim(\int_l M) = \dim(M)$ for all finite dimensional right C-comodules M, equivalently, $\dim(\int_r N) = \dim(N)$ for all finite dimensional left C-comodules N.

Corollary
- “Another Proof for the existence and uniqueness of integrals of Hopf algebras and the equivalent characterizations”.
- Further characterizations of co-Frobenius coalgebras!
C categorical characterization

\(C \text{ coalgebra, } A = C^* \).

Generalized (quasi)Frobenius

\[
\begin{align*}
\text{f.d.Rat} & \rightarrow \text{mod} \ A \\
\text{Hom}_A(\cdot, A) & \subseteq \Hom_A(\cdot, K) \\
\text{Rat} & \rightarrow \text{mod} \ A \\
\text{Hom}_A(\cdot, A) & \subseteq \Hom_A(\cdot, K) \\
A & \rightarrow \text{mod} \ A
\end{align*}
\]

Generalized (quasi)Frobenius

\[
\begin{align*}
\text{f.d.Rat} & \rightarrow \text{mod} \ A \\
\text{Hom}_A(\cdot, A) & \subseteq \Hom_A(\cdot, K) \\
\text{Rat} & \rightarrow \text{mod} \ A \\
\text{Hom}_A(\cdot, A) & \subseteq \Hom_A(\cdot, K) \\
A & \rightarrow \text{mod} \ A
\end{align*}
\]

Generalized (quasi)Frobenius

\[
\begin{align*}
\text{f.d.Rat} & \rightarrow \text{mod} \ A \\
\text{Hom}_A(\cdot, A) & \subseteq \Hom_A(\cdot, K) \\
\text{Rat} & \rightarrow \text{mod} \ A \\
\text{Hom}_A(\cdot, A) & \subseteq \Hom_A(\cdot, K) \\
A & \rightarrow \text{mod} \ A
\end{align*}
\]

Generalized (quasi)Frobenius

\[
\begin{align*}
\text{f.d.Rat} & \rightarrow \text{mod} \ A \\
\text{Hom}_A(\cdot, A) & \subseteq \Hom_A(\cdot, K) \\
\text{Rat} & \rightarrow \text{mod} \ A \\
\text{Hom}_A(\cdot, A) & \subseteq \Hom_A(\cdot, K) \\
A & \rightarrow \text{mod} \ A
\end{align*}
\]

Generalized (quasi)Frobenius

\[
\begin{align*}
\text{f.d.Rat} & \rightarrow \text{mod} \ A \\
\text{Hom}_A(\cdot, A) & \subseteq \Hom_A(\cdot, K) \\
\text{Rat} & \rightarrow \text{mod} \ A \\
\text{Hom}_A(\cdot, A) & \subseteq \Hom_A(\cdot, K) \\
A & \rightarrow \text{mod} \ A
\end{align*}
\]

Quasi-co-Frobenius = weak isomorphism

co-Frobenius = isomorphism
Other Results

- Examples showing that the results are the best possible;
- Examples showing that all the possible inclusions between the above classes of coalgebras and other important ones (& combinations of left & right of these) are strict. Also, left QcF \Rightarrow left semiperfect, but also right semiperfect (new)!
- Other connections and applications to compact groups;
- For algebras, the cogenerator and the self-injective do not imply each other. For coalgebras, projective (left) implies generator (right); we prove the converse is not true, and give the precise conditions when it is.
Antipodes

H-dual quasi-Hopf algebra (co-quasi Hopf): H coassociative coalgebra but not necessarily associative as an algebra. Same compatibility.

$\varphi \in (H \otimes H \otimes H)^*$ - reassociator, invertible with respect to the convolution algebra structure of $(H \otimes H \otimes H)^*$. For all $h, g, f, e \in H$:

\[
\begin{align*}
 h_1(g_1 f_1)\varphi(h_2, g_2, f_2) &= \varphi(h_1, g_1, f_1)(h_2 g_2)f_2 \\
 1h &= h1 = h \\
 \varphi(h_1, g_1, f_1 e_1)\varphi(h_2 g_2, f_2, e_2) &= \varphi(g_1, f_1, e_1)\varphi(h_1, g_2 f_2, e_2)\varphi(h_2, g_3, f_3) \\
 \varphi(h, 1, g) &= \varepsilon(h)\varepsilon(g)
\end{align*}
\]
Antipodes

H-dual quasi-Hopf algebra (co-quasi Hopf): H coassociative coalgebra but not necessarily associative as an algebra. Same compatibility.

$\varphi \in (H \otimes H \otimes H)^*$ - reassociator, invertible with respect to the convolution algebra structure of $(H \otimes H \otimes H)^*$. For all $h, g, f, e \in H$:

\[
\begin{align*}
 h_1(g_1 f_1)\varphi(h_2, g_2, f_2) &= \varphi(h_1, g_1, f_1)(h_2 g_2)f_2 \\
 1h = h1 &= h \\
 \varphi(h_1, g_1, f_1 e_1)\varphi(h_2 g_2, f_2, e_2) &= \varphi(g_1, f_1, e_1)\varphi(h_1, g_2 f_2, e_2)\varphi(h_2, g_3, f_3) \\
 \varphi(h, 1, g) &= \varepsilon(h)\varepsilon(g)
\end{align*}
\]

\exists a coalgebra antimorphism S of H and elements $\alpha, \beta \in H^*$ such that for all $h \in H$:

\[
\begin{align*}
 S(h_1)\alpha(h_2)h_3 &= \alpha(h)1, & h_1 \beta(h_2)S(h_3) &= \beta(h)1 \\
 \varphi(h_1 \beta(h_2), S(h_3), \alpha(h_4)h_5) &= \varphi^{-1}(S(h_1), \alpha(h_2)h_3, \beta(h_4)S(h_5)) = \varepsilon(h).
\end{align*}
\]
0 \neq t \in \int; \ kt \subseteq Rat_{H^*H^*} = Rat_{H_{H^*}} \text{ is a two sided ideal } \Rightarrow \ kt \text{ also has a left comultiplication } t \mapsto a \otimes t. \text{ i.e. } t \cdot \alpha = \alpha(a)t, \ \forall \alpha \in H^*.

a - the distinguished grouplike of \ H.

For \ M \in \mathcal{M}^H, \ let \ ^aM \in ^H\mathcal{M} \ be (well) defined by

\[M \ni m \mapsto m_{-1}^a \otimes m_0^a = aS(m_1) \otimes m_0 \in H \otimes M \]
0 \neq t \in \int; \; kt \subseteq \text{Rat}(H^*H^*) = \text{Rat}(H_{H^*}^*) \text{ is a two sided ideal} \Rightarrow kt \text{ also has a left comultiplication } t \mapsto a \otimes t. \text{ i.e. } t \cdot \alpha = \alpha(a)t, \forall \alpha \in H^*.

*a - the distinguished grouplike of } H.

For } M \in M^H, \text{ let } a^M \in H^M \text{ be (well defined by)

} M \ni m \mapsto m^a_{-1} \otimes m^a_0 = aS(m_1) \otimes m_0 \in H \otimes M

\textbf{Note}

The map } p : H \rightarrow \text{Rat}(H^*), \; p(x) = x \mapsto t \text{ is a bijective morphism of left } H\text{-comodules (right } H^*\text{-modules). In fact, we have an isomorphism of left } H\text{-comodules } H \otimes \int_r \rightarrow \text{Rat}(H^*), \; (x, t) \mapsto (x \mapsto t)
0 \neq t \in \int_{i}; \ kt \subseteq Rat(H^*H^*) = Rat(H_{H^*}^*) \text{ is a two sided ideal } \Rightarrow kt \text{ also has a left comultiplication } t \mapsto a \otimes t. \ i.e. \ t \cdot \alpha = \alpha(a)t, \ \forall \alpha \in H^*. \\
\text{a - the distinguished grouplike of } H. \\
\text{For } M \in \mathcal{M}^H, \text{ let } a^{M} \in H^M \text{ be (well) defined by}

M \ni m \mapsto m^a_{-1} \otimes m^a_{0} = aS(m_1) \otimes m_0 \in H \otimes M

\textbf{Note}

The map } p : H \to Rat(H^*), \ p(x) = x \mapsto t \text{ is a bijective morphism of left } H\text{-comodules (right } H^*\text{-modules). In fact, we have an isomorphism of left } H\text{-comodules } H \otimes \int_r \to Rat(H^*), \ (x, t) \mapsto (x \to t)

\textbf{Proposition}

The map } p : a^H \to Rat(H^*), \ p(x) = x \mapsto t \text{ is a surjective morphism of left } H\text{-comodules (right } H^*\text{-modules).}
Theorem (Radford)
The antipode of a co-Frobenius Hopf algebra is bijective.

Proof. Only need S surjective (the map $H\ni x \mapsto t \leftarrow x \in H^*$ is injective $\Rightarrow S$-injective)

Put $\pi := a_H \rightarrow \text{Rat}(H^*H^*) \sim \rightarrow H \otimes \int_r \approx H$; it splits ($H$ projective in $H\text{M}$) so $\exists \phi \in H\text{M}$ s.t. $\pi\phi = \text{Id}_H$.

$\phi(x) a^{-1} \otimes \phi(x) a_0 = x_1 \otimes \phi(x_2) \Rightarrow aS(\phi(x)_2) \otimes \phi(x)_1 = x_1 \otimes \phi(x_2) \Rightarrow S(a^{-1}) S(\phi(x)_2) \varepsilon\pi(\phi(x)_1) = x_1 \varepsilon\pi\phi(x_2) = x_1 \varepsilon(x) = x \Rightarrow x = S(\varepsilon\pi(\phi(x)_1)) \phi(x)_2 a^{-1}$.

□

This proof adapts to co-quasi Hopf algebras (dual quasi-Hopf algebras), with some technicalities; some assembly (inventivity) required...
Theorem (Radford)

The antipode of a co-Frobenius Hopf algebra is bijective.

Proof.[New] Only need S surjective (the map $H \ni x \mapsto t \leftarrow x \in H^*$ is injective \Rightarrow S-injective)

Put $\pi := aH \xrightarrow{p} Rat(H_{H^*}^*) \sim H \otimes \int_r \simeq H$; it splits ($H$ projective in $H \mathcal{M}$) so $\exists \varphi \in H \mathcal{M}$ s.t. $\pi \varphi = \text{Id}_H$.

This proof adapts to co-quasi Hopf algebras (dual quasi-Hopf algebras), with some technicalities; some assembly (inventivity) required...
Theorem (Radford)

The antipode of a co-Frobenius Hopf algebra is bijective.

Proof. [New] Only need S surjective (the map $H \ni x \mapsto t \leftarrow x \in H^*$ is injective $\Rightarrow S$-injective)

Put $\pi := a_H \xrightarrow{p} \text{Rat}(H^{*H}_{H^*}) \xrightarrow{\sim} H \otimes \int_r \simeq H$; it splits ($H$ projective in $^H\mathcal{M}$) so $\exists \varphi \in ^H\mathcal{M}$ s.t. $\pi \varphi = \text{Id}_H$.

$$
\varphi(x)_1 \otimes \varphi(x)_0 = x_1 \otimes \varphi(x_2) \Rightarrow
$$
Antipodes

Theorem (Radford)
The antipode of a co-Frobenius Hopf algebra is bijective.

Proof. [New] Only need S surjective (the map $H \ni x \mapsto t \leftarrow x \in H^*$ is injective $\Rightarrow S$-injective)
Put $\pi : = aH \xrightarrow{p} \text{Rat}(H_{H^*}) \overset{\sim}{\longrightarrow} H \otimes \int_r \simeq H$; it splits ($H$ projective in $H\mathcal{M}$) so $\exists \varphi \in H\mathcal{M}$ s.t. $\pi \varphi = \text{Id}_H$.

$$
\varphi(x)^a_{-1} \otimes \varphi(x)^a_0 = x_1 \otimes \varphi(x_2) \Rightarrow
\a S(\varphi(x)_2) \otimes \varphi(x)_1 = x_1 \otimes \varphi(x_2) \Rightarrow
$$
Theorem (Radford)

The antipode of a co-Frobenius Hopf algebra is bijective.

Proof. [New] Only need S surjective (the map $H \ni x \mapsto t \leftarrow x \in H^*$ is injective $\Rightarrow S$-injective)

Put \(\pi := aH \xrightarrow{p} \text{Rat}(H_{H^*}^*) \xrightarrow{\sim} H \otimes \int_r \simeq H; \) it splits (H projective in \(H \mathcal{M} \)) so $\exists \varphi \in H \mathcal{M}$ s.t. \(\pi \varphi = \text{Id}_H. \)

\[
\varphi(x)^a \otimes \varphi(x)^a = x_1 \otimes \varphi(x_2) \Rightarrow \\
aS(\varphi(x)_2) \otimes \varphi(x)_1 = x_1 \otimes \varphi(x_2) \Rightarrow \\
S(a^{-1})S(\varphi(x)_2)\varepsilon\pi(\varphi(x)_1) = x_1\varepsilon\pi\varphi(x_2) = x_1\varepsilon(x_2) = x \Rightarrow
\]
Theorem (Radford)

The antipode of a co-Frobenius Hopf algebra is bijective.

Proof. [New] Only need S surjective (the map $H \ni x \mapsto t \leftarrow x \in H^*$ is injective $\Rightarrow S$-injective)

Put $\pi := \overset{a}{H} \xrightarrow{p} \text{Rat}(H^*_H) \xrightarrow{\sim} H \otimes \int_r \simeq H$; it splits ($H$ projective in $H \mathcal{M}$) so $\exists \varphi \in H \mathcal{M}$ s.t. $\pi \varphi = \text{Id}_H$.

\[
\begin{align*}
\varphi(x)^a_1 \otimes \varphi(x)^a_0 &= x_1 \otimes \varphi(x_2) \Rightarrow \\
aS(\varphi(x)_2) \otimes \varphi(x)_1 &= x_1 \otimes \varphi(x_2) \Rightarrow \\
S(a^{-1})S(\varphi(x)_2)\varepsilon\pi(\varphi(x)_1) &= x_1\varepsilon\pi\varphi(x_2) = x_1\varepsilon(x_2) = x \Rightarrow \\
x &= S(\varepsilon\pi(\varphi(x)_1)\varphi(x)_2)a^{-1}).
\end{align*}
\]

This proof adapts to co-quasi Hopf algebras (dual quasi-Hopf algebras), with some technicalities; some assembly (inventivity) required...
A proof of the bijectivity of the antipode without the use of the uniqueness of integrals, which follows then as a consequence. This shows a much tighter connection to compact groups than realized before.

For $(M, \rho) \in \mathcal{M}^H$, $\rho : M \longrightarrow M \otimes H$, $\rho(m) = m_0 \otimes m_1$, we define $S_M \in \mathcal{H} \mathcal{M}$ with comodule structure given by

$$ m \mapsto m_{(-1)} \otimes m_{(0)} = S(m_1) \otimes m_0 $$
A proof of the bijectivity of the antipode without the use of the uniqueness of integrals, which follows then as a consequence. This shows a much tighter connection to compact groups than realized before.

For \((M, \rho) \in \mathcal{M}^H\), \(\rho : M \rightarrow M \otimes H\), \(\rho(m) = m_0 \otimes m_1\), we define \(S^M \in H^\mathcal{M}\) with comodule structure given by

\[m \mapsto m_{(-1)} \otimes m_{(0)} = S(m_1) \otimes m_0 \]

Proposition

\(S^{Rat}(H^*)\), with left \(H\)-module structure given by

\[H \otimes S^{Rat}(H^*) \rightarrow S^{Rat}(H^*), \quad x \otimes \alpha \rightarrow x \mapsto \alpha \]

and left \(H\)-comodule structure as above is a left \(H\)-Hopf module.
By the above and the Fundamental Th of Hopf modules:
\[S\text{Rat}(H^*) \cong H \otimes (S\text{Rat}(H^*))^{co} = H \otimes \int_l \] and then we get a map
\[\pi : (S\text{H})^{(\dim \int_l)} \cong S\text{Rat}(H^*) \cong H \otimes (S\text{Rat}(H^*))^{co} \to HH \]

Then, looking at the “coalgebras of the coefficients”, we get \(C_H \subseteq C_{S\text{H}} \) and then immediately \(H \subseteq S(H) \).

New Perspective: With this, the classical proof of the uniqueness of the Haar measure can be adopted “mutatis-mutandis” to Hopf algebras.

T
THAN
THANK
THANK YOU
THANK YOU
THANK YOU
THANK YOU!