Subfields of the complete Picard–Vessiot closure of a differential field

Andy Magid
University of Oklahoma
F a differential field of characteristic 0 and algebraically closed field of constants C

The Picard–Vessiot Closure F_1 of $F_0 = F$ is a differential extension field $F_1 \supseteq F_0$ such that

- F_1 is a union of Picard–Vessiot extensions of F_0

- Every Picard–Vessiot extension of F_0 embeds in F_1

Facts about F_1:

- $G(F_1/F_0)$ is proaffine and there is a Galois correspondence

- Differential automorphisms of F_0 [ToC] lift to F_1

- F_1 may have proper Picard–Vessiot extensions

Example $C \subset C(x) \subset C(x, \log x) \subset C(x, \log x, \text{Li}(x))$
Define inductively:

\[F_{i+1} = (F_i)_1 \]

Then

\[F_0 \subseteq F_1 \subseteq F_2 \subseteq \ldots \]

Note inclusions can be proper: \(F_0 = C, x \in F_1 - F_0, \log x \in F_2 - F_1, \text{Li}(x) \in F_3 - F_2 \), etc [RS]

The complete Picard–Vessiot closure of \(F \) is

\[F_\infty = \bigcup_i F_i \]

Automorphisms lift:

\[G(F_\infty/F) \rightarrow G(F_i/F) \]

\[G(F_\infty/F) = \varprojlim G(F_i/F) \]

\[G(F_{i+1}/F_i) \hookrightarrow G(F_{i+1}/F) \twoheadrightarrow G(F_i/F) \]

\[G(F_{i+1}/F_i) \text{ (pro) algebraic and} \]

\[F_{i+1}^{G(F_{i+1}/F_i)} = F_i \text{ so } F_\infty^{G(F_\infty/F_0)} = F_0 \]
Characterization of F_∞

Theorem. The extension $F_\infty \supseteq F$ satisfies

1. The constants of F_∞ are those of F.

2. Every linear homogeneous differential equation over F_∞ has a full set of solutions in F_∞.

3. If $F_\infty \supseteq E \supseteq F$ is an intermediate differential subfield such that every linear homogeneous differential equation over E has a full set of solutions in E then $E = F_\infty$.

Moreover, any differential field $K \supseteq F$ with the above properties is differentiably F isomorphic to F_∞.

A trivial consequence of the third condition

Corollary. Let E be a differential subfield of F_∞ with $F \subseteq E$. Then $F_\infty = E_\infty$. In particular, all the fields E_i can be regarded as subfields of F_∞.

Consequence of this:

Automorphisms of E lift to $F_\infty = E_\infty$
Reason for the corollary: E a differential subfield of F_∞ with $F \subseteq E$, and L a monic linear differential operator over E. Then there is a differential subfield $E_L \subseteq F_\infty$ with $E \subseteq E_L$ such that $E_L \supseteq E$ is a Picard–Vessiot extension for L.

An intermediate field $F_\infty \supseteq E \supseteq F$ is normal if $\sigma(E) = E$ all $\sigma \in G(F_\infty/F)$.

$E \subset M \subset K$ intermediate fields, with K normal.

$G(F_\infty/E) \rightarrow G(K/E)$ defined by normality, onto by lifting

\[
E = F_\infty^{G(F_\infty/E)} = K^{G(K/E)}
\]

so

\[
M = K^{G(K/M)}
\]

semi Galois Theory

$M \mapsto G(K/M)$ is an injection from the set of differential subfields of K containing E to the set of subgroups of $G(K/E)$, with right inverse $H \mapsto K^H$.

5
Iterated Picard–Vessiot (IPV) E: $F = E_0 \subseteq E_1 \cdots \subseteq E_n = E$ such that for each i E_{i+1} is a Picard–Vessiot extension of E_i.

E_0, E_1, \ldots, E_n a defining tower for E.

Theorem. Let E be a differential subfield of F_∞ finitely generated over F. Then E is contained in an iterated Picard–Vessiot extension of F. Conversely, if $E \supseteq F$ is a subfield of an iterated Picard–Vessiot extension then there is a differential embedding of E over F into F_∞.

Locally Iterated Picard–Vessiot (LIPV) extension if every finite subset of E belongs to an iterated Picard–Vessiot subextension of F contained in E.

Fact: a compositum of LIPV’s in F_∞ is LIPV.

Theorem. Let E be a differential subfield of F_∞. Then E is contained in a locally iterated Picard–Vessiot extension of F. Conversely, if $E \supseteq F$ is a subfield of an locally iterated Picard–Vessiot extension then there is a differential embedding of E over F into F_∞.
Proposition. Let K^1 and K^2 be locally iterated Picard–Vessiot extensions of F inside F_∞, and suppose $\tau : K^1 \to K^2$ is an F differential isomorphism. Then there is an F differential automorphism σ of F_∞ which restricts to τ on K^1.

Normality Theorem

Theorem. Let E be a locally iterated Picard–Vessiot extension of F contained in F_∞. Then the following conditions are equivalent:

1. Every differential automorphism of F_∞ over F carries E to itself.

2. For any no new constants extension K of F, all differential embeddings $E \to K$ over F have the same image.
Example

\[F = C(t), \quad y \in F_1 \subseteq F_\infty, \quad y' = t^{-1} \]

\[\{z_a \mid a \in C\} \subset F_2 \subseteq F_\infty, \quad z'_a = ((y + a)t)^{-1}. \]

\[F\langle y \rangle = F(y) \]

\[E_a := F\langle z_a \rangle = F(y, z_a) \]

\(F \subset F(y) \) and \(F(y) \subset E_a \) are Picard–Vessiot extensions, and \(F \subset E_a \) is an iterated Picard–Vessiot extension: a defining tower is \(F \subset F(y) \subset E_a \).

\[\mathcal{E} = \{ E_a \mid a \in C \}. \]

The compostium \(E = F(y, \{ z_a \mid a \in C \}) \) of \(\mathcal{E} \) in \(F_\infty \) is LIPV

\[\sigma \in G(F_\infty/F), \quad y^\sigma = y + b(\sigma) \text{ for some } b(\sigma) \in C. \]

\[\tau \in G(F_\infty/F) \text{ then } b(\sigma \tau) = b(\sigma) + b(\tau). \]

\[z^\sigma_a = z_a + b(\sigma) + c(\sigma, a) \text{ for some } c(\sigma, a) \in C \]

\[c(\sigma \tau, a) = c(\sigma, a + b(\tau)) + c(\tau, a). \]

\[G(E/F) = \text{Map}(C, \mathbb{G}_a) \rtimes \mathbb{G}_a \]

\(G_a = C \) acts on \(\text{Map}(C, \mathbb{G}_a) \) by \(a \cdot f(x) = f(x + a) \)

\[G(E/F) \to \text{Map}(C, \mathbb{G}_a) \rtimes \mathbb{G}_a \text{ by } \sigma \mapsto (c(\sigma, \cdot), b(\sigma)). \]

\(\mathbb{G}_a \int_r \mathbb{G}_a \)