Iterative q difference Galois theory

Charlotte Hardouin (IWR)
Special Session on Differential Algebra, II
14 April 2007
Iterative q-difference rings

Let C, be an algebraically closed field and q an element of C. Let $F = C(t)$ be the field of rational functions over C and let σ_q be the automorphism of F given by $\sigma_q(f)(t) = f(qt)$.

q-arithmetical properties

Definition 1 Let $k \in \mathbb{Z}$. Put $[k]_q := \frac{q^k - 1}{q - 1}$

1. Let us denote by $[k]_q!$ the element of C defined by $[k]_q[k-1]_q...[1]_q$. We will say that $[k]_q!$ is the q-factorial of k.

2. Let us denote by $\left(\begin{array}{c} r \\ k \end{array}\right)_q$ the element of C defined by $\frac{[r]_q!}{[k]_q![r-k]_q!}$. We will say that $\left(\begin{array}{c} r \\ k \end{array}\right)_q$ is the q-binomial coefficient of r to k.
Iterative q-difference ring

Definition 2 Let R be a q-difference ring extension of F and let $\delta_R^* := (\delta_R^{(k)})_{k \in \mathbb{N}}$ be a collection of maps from R to R. The family δ_R^* is called an **iterative q-difference** of R, if all the following properties are satisfied

1. $\delta_R^{(0)} = \text{id}$.
2. $\delta_R^{(1)} = \frac{\sigma_q - \text{id}}{(q-1)t}$
3. $\delta_R^{(k)}(x + y) = \delta_R^{(k)}(x) + \delta_R^{k}(y)$
4. $\delta^{(k)}(ab) = \sum_{i+j=k} \sigma_q^i(\delta_R^{(j)}(a))\delta_R^{(i)}(b)$.
5. $\delta_R^{(i)} \circ \delta_R^{(j)} = \binom{i+j}{i}_q \delta_R^{(i+j)}$

for all $a, b \in R$ and all $i, j, k \in \mathbb{N}$. The set of such iterative q-differences is denoted by $\text{ID}_q(R)$.

For $\delta_R^* \in \text{ID}_q(R)$, the tuple (R, δ_R^*) is called an **iterative q-difference ring** (ID$_q$-ring). We say that an element c of R is a constant if $\forall k \in \mathbb{N}^*, \delta_R^{(k)}(c) = 0$. We will denote by $C(R)$ the ring of constants of R.
Iterative q-difference modules

Now let q be a n-th primitive root of unity.

Definition 3 Let (R, δ^*_R) be an iterative q-difference ring. Let M be a free R-module of finite type over R. We will say that (M, δ^*_M) is an iterative q-difference module if there exists a family of map $\delta^*_M = (\delta^{(k)}_M)_{k \in \mathbb{N}}$, such that for all $i, j, k \in \mathbb{N}$:

1. $\delta^{(0)}_M = id_M$.

2. $\delta^{(k)}_M$ is an additive map from M to M.

3. $\delta^{(k)}_M (am) = \sum_{i+j=k} \sigma_q^i (\delta^{(j)}_R (a)) \delta^{(i)}_M (m)$ for $a \in R$ and $m \in M$.

4. $\delta^{(i)}_M \circ \delta^{(j)}_M = \binom{i+j}{i} q^{i+j} \delta^{(i+j)}_M$.

The set of all iterative q-difference modules over R is denoted by $IDM_q(R)$.

Theorem 4 Let (L, δ^*_L) be ID_q field. Then $IDM_q(L)$ is a neutral Tannakian category over L. The unit object is (L, δ^*_L).
Iterative q-difference equation(ID_qE)

Notations 5 Let (L, δ^*_L) be an iterative q-difference field. If,

1. the characteristic of the constants field C of L is zero then let us denote by $(k_C)_{k\in\mathbb{N}}$ the family $(k)_{k\in\mathbb{N}},$

2. the characteristic of the constants field C of L is positive equal to p then let us denote by $(k_C)_{k\in\mathbb{N}}$ the family $\{1, (np^k)_{k\in\mathbb{N}}\}.$

Proposition 6 Let $M \in IDM_q(L)$ of dimension m and let $B_0 = \{b_1, ..., b_n\}$ be a basis of $M.$ Then, there exist $\{A_k \in M_m(L)\}_{k\in\mathbb{N}}$ such that the following statements are equivalent:

1. For all $y \in L^n$ s.t $B_0.y = \sum_{i=1}^n y_ib_i \in V_M = \cap_{k\in\mathbb{N}} Ker(\delta_M^{(k)}).$

2. $\delta_L^{(k_C)}(y) = A_ky, \forall k \in \mathbb{N}.$

Definition 7 The family of equations $\{\delta_L^{(k_C)}(y) = A_ky\}_{k\in\mathbb{N}}$ related to the IDM_q-module (M, δ^*_M) in proposition 6 is called an iterative q-difference equation(ID_qE).
Iterative q-difference Picard-Vessiot extensions

Definition 8 Let (L, δ_L^*) be an iterative q-difference field, and let (M, δ_M^*) be an object of $IDM_q(L)$ and let $\{\delta_L^{(kC)}(y) = A_k y\}_{k \in \mathbb{N}}$ be an iterative q-difference equation related to the IDM_q-module (M, δ_M^*), denote by $IDE_q(M)$.

Let (R, δ_R^*) be an iterative q-difference extension of (L, δ_L^*). A matrix $Y \in Gl_n(R)$ is called a fundamental solution matrix for $ID_qE(M)$ if $\delta_R^{(kC)}(Y) = A_k Y$, $\forall k \in \mathbb{N}$.

The ring R is called an iterative q-difference Picard-vessiot ring for $ID_qE(M)$ (IPV$_q$-ring) if it fulfills the following conditions:

1. R is a simple ID_q ring (that means that R contains no proper iterative q-difference ideal),

2. $ID_qE(M)$ has a fundamental solution matrix Y with coefficients in R,

3. R is generated by the coefficients of Y and $\text{det}(Y)^{-1}$.

4. $C(R) = C(L)$
Existence of Picard-Vessiot Rings and Iterative Galois groups

Theorem 9 Let (L, δ^*_L) be an ID_q field with $C(L)$ algebraically closed and $(M, \delta^*_M) \in IDM_q(L)$ with $ID_qE : \delta^{(kC)}_L(y) = A_k y$. Then, there exists an iterative q-difference Picard-Vessiot ring for the iterative q-difference equation which is unique up to iterative q-difference isomorphism.

Definition 10 Let (L, δ^*_L) be an iterative q-difference field, with an algebraically closed field of constants K, R/L be an iterative q-difference Picard-Vessiot ring for some iterative q-difference equation. An automorphism $\tau \in Hom_{ID_q}(R/L)$ is called an iterative difference automorphism. The group $\text{Gal}(R/L) := \text{Aut}_{ID_q}(R/L)$ of all such automorphisms is called the **iterative q-difference Galois group** of the extension R/L.
Kolchin’s Approach and Galois correspondence

Proposition 11 If R/L is an iterative q-difference Picard-Vessiot ring for some iterative q-difference equation $\delta^{(kC)}_L(y) = A_ky$ with $A_k \in \text{Gl}_n(L)$ for all $k \in \mathbb{N}$, then $\text{Gal}(R/L)$ is embedded in $\text{Gl}_n(C(L))$ and has a structure of reduced linear algebraic group.

Proposition 12 Let (L, δ^*_L) be an iterative q-difference field with field of constants C, and let M be an iterative q-difference module over L. Let us denote by R/L an_IPV_q ring for M. Let $G \subset \text{Gl}_n(C(L))$ be a reduced linear group such that $G(C(L)) = \text{Gal}(R/L)$. Then $\text{Spec}(R)$ is a G-torsor.
Galois Correspondence

let \((L, \delta^*_L)\) be an \(ID_q\)-field with \(C = C(L)\), \(M \in ID_qL\) an \(ID_q\)-module and let \(E/L\) be an \(IPV_q\) extension for \(M\). Let us denote by \(\mathcal{G}\) a reduced linear algebraic group such that \(\mathcal{G}(C) = \text{Gal}(E/L)\). Put

\[\mathfrak{H} = \{\mathcal{H} | \mathcal{H} \subset \mathcal{G} \text{ is a Zariski closed reduced linear algebraic subgroup}\},\]

and

\[\mathcal{L} = \{T | T \text{ is an intermediate iterative difference field } L \subset T \subset E\}.\]

Then

1. the map \(\Psi\) defined by

\[\Psi : \mathfrak{H} \longrightarrow \mathcal{L}\]

\[\mathcal{H} \rightarrow E^{\mathcal{H}(C)}\]
is an anti-isomorphism of lattices with inverse ψ^{-1} given by

$$\psi^{-1} : \mathcal{L} \rightarrow \mathcal{H}$$

$$T \rightarrow \mathcal{H}$$

where $\mathcal{H}(C) := \text{Gal}(E/T)$;

2. if $\mathcal{H} \subset \mathcal{G}$ is a Zariski closed reduced normal subgroup, then $T := E^{\mathcal{H}(C)}$ is an iterative Picard-Vessiot extension of L with Galois group $(\mathcal{G}/\mathcal{H})(C)$.