Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Institut de Mathématiques de Jussieu, Paris, France

AMS Special Session on Differential Algebra
April 15, 2007
Introduction: Two Classical Worlds

<table>
<thead>
<tr>
<th>Linear Differential Operators</th>
<th>Linear Differential Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>over $\mathbb{P}^1_{\mathbb{C}}$</td>
<td>over $\mathbb{P}^1_{\mathbb{C}}$</td>
</tr>
</tbody>
</table>
Introduction: Two Classical Worlds

<table>
<thead>
<tr>
<th>Linear Differential Operators over $\mathbb{P}^1_\mathbb{C}$</th>
<th>Linear Differential Systems over $\mathbb{P}^1_\mathbb{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>of order n</td>
<td>of rank n</td>
</tr>
</tbody>
</table>
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction: Two Classical Worlds

<table>
<thead>
<tr>
<th>Linear Differential Operators over \mathbb{P}^1_C</th>
<th>Linear Differential Systems over \mathbb{P}^1_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>of order n with singular locus $\subset S$</td>
<td>of rank n with singular locus $\subset S$</td>
</tr>
</tbody>
</table>

Introduction: Two Classical Worlds

Linear Differential Operators over \mathbb{P}^1_C

- of order n
- with singular locus $\subset S$

Linear Differential Systems over \mathbb{P}^1_C

- of rank n
- with singular locus $\subset S$

Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation Space of L_0 as Operator

From L_0 to ∇_0

Deformation Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of \mathcal{E}_0 in \mathcal{M}_0

- Locally from \mathcal{E}_0 into \mathcal{N}_0
- From \mathcal{N}_0 into \mathcal{M}_0

Symplectic property of \mathcal{E}_0 into \mathcal{M}_0
Introduction: Two Classical Worlds

<table>
<thead>
<tr>
<th>Linear Differential Operators</th>
<th>Linear Differential Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>over \mathbb{P}^1_C</td>
<td>over \mathbb{P}^1_C</td>
</tr>
<tr>
<td>of order n</td>
<td>of rank n</td>
</tr>
<tr>
<td>with singular locus $\subset S$</td>
<td>with singular locus $\subset S$</td>
</tr>
<tr>
<td>Fuchsian</td>
<td>Logarithmic</td>
</tr>
</tbody>
</table>

Linear Differential Operators

- **Order**: n
- **Domain**: \mathbb{P}^1_C
- **Isomorphism**: $E_0 \cong \mathcal{M}_0$
- **Type**: Fuchsian

Linear Differential Systems

- **Rank**: n
- **Domain**: \mathbb{P}^1_C
- **Isomorphism**: $\nabla_0 \cong \mathcal{N}_0$
- **Type**: Logarithmic

Question

Can one find some explanation of this doubling? We give a "symplectic explanation" of it.
Introduction: Two Classical Worlds

<table>
<thead>
<tr>
<th>Linear Differential Operators over \mathbb{P}_C^1</th>
<th>Linear Differential Systems over \mathbb{P}_C^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>of order n with singular locus $\subset S$ Fuchsian with non-resonant exponents</td>
<td>of rank n with singular locus $\subset S$ Logarithmic with non-resonant residues</td>
</tr>
</tbody>
</table>

Introduction
- Two Classical Worlds

Linear Differential Operators
- of order n
- with singular locus $\subset S$
- Fuchsian
- with non-resonant exponents

Linear Differential Systems
- of rank n
- with singular locus $\subset S$
- Logarithmic
- with non-resonant residues

At an irreducible point,
- dimension $= g$
- where g is some integer depending on n and $|S|$.

Questions
- Can one find some explanation of this doubling?
- We give a "symplectic explanation" of it.
Introduction: Two Classical Worlds

<table>
<thead>
<tr>
<th>Linear Differential Operators over $\mathbb{P}^1_{\mathbb{C}}$</th>
<th>Linear Differential Systems over $\mathbb{P}^1_{\mathbb{C}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>of order n</td>
<td>of rank n</td>
</tr>
<tr>
<td>with singular locus $\subset S$</td>
<td>with singular locus $\subset S$</td>
</tr>
<tr>
<td>Fuchsian</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>with non-resonant exponents</td>
<td>with non-resonant residues</td>
</tr>
<tr>
<td>At an irreducible point, $\text{dimension} = g$</td>
<td>At an irreducible point, $\text{dimension} = 2g$</td>
</tr>
</tbody>
</table>

where g is some integer depending on n and $|S|$.
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation Space of L_0 as Operator

From L_0 to ∇_0

Introduction: Two Classical Worlds

<table>
<thead>
<tr>
<th>Linear Differential Operators over $\mathbb{P}^1_{\mathbb{C}}$</th>
<th>Linear Differential Systems over $\mathbb{P}^1_{\mathbb{C}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>of order n</td>
<td>of rank n</td>
</tr>
<tr>
<td>with singular locus $\subset S$</td>
<td>with singular locus $\subset S$</td>
</tr>
<tr>
<td>Fuchsian</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>with non-resonant exponents</td>
<td>with non-resonant residues</td>
</tr>
<tr>
<td>At an irreducible point, $\textbf{dimension} = g$</td>
<td>At an irreducible point, $\textbf{dimension} = 2g$</td>
</tr>
</tbody>
</table>

where g is some integer depending on n and $|S|$.

Question

Can one find some explanation of this doubling?

We give a “symplectic explanation” of it.
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation Space of L_0 as Operator

From L_0 to ∇_0

Deformation Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of \mathcal{E}_0 in \mathcal{M}_0

Locally from \mathcal{E}_0 into \mathcal{N}_0

From \mathcal{N}_0 into \mathcal{M}_0

Symplectic property of \mathcal{E}_0 into \mathcal{M}_0
The Starting Point L_0

Basic Setting

Fix $n \geq 1$. Fix $m \geq 1$, and fix

$$S := \{s_0, \ldots, s_m, s_{m+1} = \infty\} \subset \mathbb{P}^1_C \text{ such that } s_j \neq s_j.$$

Then we set $P = \prod_{j=0}^{m} (z - s_j)$ and $P_0 = \prod_{j=1}^{m} (z - s_j)$.

Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation

Space of L_0 as Operator

From L_0 to ∇_0

Deformation

Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of E_0 in \mathcal{M}_0

Locally from E_0 into \mathcal{N}_0

From \mathcal{N}_0 into \mathcal{M}_0

Symplectic property of E_0 into \mathcal{M}_0
The Starting Point \(L_0 \)

Basic Setting

Fix \(n \geq 1\). Fix \(m \geq 1\), and fix

\[
S := \{s_0, \ldots, s_m, s_{m+1} = \infty\} \subset \mathbb{P}^1_C \text{ such that } s_j \neq s_j'
\]

Then we set \(P = \prod_{j=0}^{m}(z - s_j) \) and \(P_0 = \prod_{j=1}^{m}(z - s_j) \).

Definition of \(\mathcal{E} \)

\[
\mathcal{E} = \{L \in W = \mathbb{C}(z)[d/dz], \text{ } L \text{ is a monic Fuchsian operator of order } n \text{ with singular locus in } S\}.
\]

These \(L \)'s are exactly those that can be written as:

\[
L = \left(\frac{d}{dz} \right)^n + \frac{a_{n-1}}{P} \left(\frac{d}{dz} \right)^{n-1} + \cdots + \frac{a_0}{P^n} \text{ with } a_i \in \mathbb{C}[Z]_{\leq i \cdot m}
\]
The Starting Point L_0

Basic Setting

Fix $n \geq 1$. Fix $m \geq 1$, and fix

$$S := \{s_0, \ldots, s_m, s_{m+1} = \infty\} \subset \mathbb{P}^1_C \text{ such that } s_j \neq s_{j'}$$

Then we set $P = \prod_{j=0}^{m}(z - s_j)$ *and* $P_0 = \prod_{j=1}^{m}(z - s_j)$.

Definition of \mathcal{E}

$$\mathcal{E} = \{L \in W = \mathbb{C}(z)[d/dz], L \text{ is a monic Fuchsian operator of order } n \text{ with singular locus in } S\}.$$

These L's are exactly those that can be written as:

$$L = (\frac{d}{dz})^n + \frac{a_{n-1}}{P}(\frac{d}{dz})^{n-1} + \cdots + \frac{a_0}{P^n} \text{ with } a_i \in \mathbb{C}[Z]_{\leq i \cdot m}$$

Definition of L_0

We fix $L_0 \in \mathcal{E}$. Suppose L_0 is irreducible and each of its local monodromies has distinct eigenvalues.
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation
Space of L_0 as Operator

From L_0 to ∇_0

Deformation
Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of \mathcal{E}_0 in \mathcal{M}_0

Locally from \mathcal{E}_0 into \mathcal{N}_0

From \mathcal{N}_0 into \mathcal{M}_0

Symplectic property of \mathcal{E}_0 into \mathcal{M}_0

Summary Diagram

$\mathcal{E} \ni L_0$
Deformation Space of L_0 with Fixed Local Monodromies

Consider the Riemann scheme

$$\mathcal{P}_0 := \left(\begin{array}{cccc} s_0 & \cdots & s_m & \infty \\ \{e_{0i}\}_{i=1\ldots n} & \cdots & \{e_{mi}\}_{i=1\ldots n} & \{e_{\infty i}\}_{i=1\ldots n} \end{array} \right)$$

of L_0. For each j, $\{e_{ji}\}_{i=1\ldots n}$ are the roots of the indicial polynomial of L_0 at s_j.

Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation Space of L_0 as Operator

From L_0 to ∇_0

Deformation Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of \mathcal{E}_0 in \mathcal{M}_0

Locally from \mathcal{E}_0 into \mathcal{N}_0

From \mathcal{N}_0 into \mathcal{M}_0

Symplectic property of \mathcal{E}_0 into \mathcal{M}_0
Deformation Space of L_0 with Fixed Local Monodromies

Consider the Riemann scheme

$$
P_0 := \begin{pmatrix}
 s_0 & \cdots & s_m & \infty \\
 \{ e_{0i} \}_{i=1\ldots n} & \cdots & \{ e_{mi} \}_{i=1\ldots n} & \{ e_{\infty i} \}_{i=1\ldots n}
\end{pmatrix}
$$

of L_0. For each j, $\{ e_{ji} \}_{i=1\ldots n}$ are the roots of the indicial polynomial of L_0 at s_j.

Definition of \mathcal{E}_0

$$
\mathcal{E}_0 = \{ L \in \mathcal{E}, \text{ the Riemann scheme of } L \text{ is } P_0 \}
$$

This is an affine variety of dimension

$$
dim(\mathcal{E}_0) = g := m \frac{n(n-1)}{2} - (n - 1)
$$
Deformation Space of L_0 with Fixed Local Monodromies

Consider the Riemann scheme

$$P_0 := \begin{pmatrix} s_0 & \cdots & s_m \\ \{ e_{0i} \}_{i=1\ldots n} & \cdots & \{ e_{mi} \}_{i=1\ldots n} & \{ e_{\infty i} \}_{i=1\ldots n} \end{pmatrix}$$

of L_0. For each j, $\{ e_{ji} \}_{i=1\ldots n}$ are the roots of the indicial polynomial of L_0 at s_j.

Definition of E_0

$$E_0 = \{ L \in E, \text{ the Riemann scheme of } L \text{ is } P_0 \}$$

This is an affine variety of dimension

$$\dim(E_0) = g := m \frac{n(n-1)}{2} - (n-1)$$

By hypothesis, each $\{ e_{ji} \}_{i=1\ldots n}$ is a family of non-congruent complex numbers modulo \mathbb{Z}. Therefore, we lie “non-resonant” case and any $L \in E_0$ has the same local monodromies as L_0. E_0 is the connected component of L_0 in the space of monic Fuchsian operators of order n with singular locus in S and same local monodromies as L_0.
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation Space of L_0 as Operator

From L_0 to ∇_0

Deformation Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of \mathcal{E}_0 in \mathcal{M}_0

Locally from \mathcal{E}_0 into \mathcal{N}_0

From \mathcal{N}_0 into \mathcal{M}_0

Symplectic property of \mathcal{E}_0 into \mathcal{M}_0

Summary Diagram

$\mathcal{E} \ni L_0 \longrightarrow \mathcal{E}_0$
From an Operator to a Connection

To any \(L \in \mathcal{E} \), \(L = \left(\frac{d}{dz} \right)^n + \frac{a_{n-1}}{P} \left(\frac{d}{dz} \right)^{n-1} + \cdots + \frac{a_0}{P^n} \) with \(a_i \in \mathbb{C}[z]_{\leq i \cdot m} \), one can attach the connection:

\[
\nabla : (\mathcal{O}_{\mathbb{P}^1})^n \rightarrow (\mathcal{O}_{\mathbb{P}^1})^n \otimes \Omega^1
\]

defined by:

\[
\nabla|_{\mathbb{P}^1 \setminus \{\infty\}} = d - A dz
\]

where

\[
A = \begin{pmatrix}
\frac{-a_0}{P^n} \\
1 & \cdots \\
\cdots & \ddots \\
1 & \cdots & \frac{-a_{n-1}}{P}
\end{pmatrix} \in M_n(\mathbb{C}(z))
\]

Question

Can one find some gauge transformation that transforms \(\nabla \) into a logarithmic connection, i.e. of the form

\[
\sum_{j=0}^{m} \frac{A_j}{z-s_j} \, dz \quad \text{with constant matrices } A_j?
\]
Definition of \mathcal{N}

\[
\mathcal{N} = \left\{ (A_0, A_1, \ldots, A_m, A_\infty) \in M_n(\mathbb{C})^{m+2}, \sum_{j=0}^{\infty} A_j = 0, \right\}
\]

\[
A_0 = \begin{pmatrix}
* & 0 & 0 & 0 \\
1 & * & 0 & 0 \\
0 & \cdots & \cdots & 0 \\
0 & 0 & 1 & *
\end{pmatrix}, \quad A_j(1 \leq j \leq m) = \begin{pmatrix}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & \cdots & \cdots \\
0 & 0 & 0 & *
\end{pmatrix}
\]

Theorem 1 (van der Put & Singer [3])

For any $L \in \mathcal{E}$, there exists $(A_0, \ldots, A_m, A_\infty) \in \mathcal{N}$ s.t. L is the minimal monic operator in W which annihilates the global section $e_1 = (1, 0, \ldots, 0) \in (O_{\mathbb{P}^1})^n$ of the logarithmic connection $d - \sum_{j=0}^{m} A_j \frac{dz}{z-s_j}$.

\[\text{Definition of } \nabla_0 \]

We fix $\nabla_0 = (A_0, \ldots, A_m, A_\infty) \in \mathcal{N}$, one of the possible tuples for L_0 given by Theorem 1.
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation Space of L_0 as Operator

From L_0 to ∇_0

Deformation Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of E_0 in M_0

Locally from E_0 into N_0

From N_0 into M_0

Symplectic property of E_0 into M_0

Definition of \mathcal{N}

$$\mathcal{N} = \{ (A_0, A_1, \ldots, A_m, A_{\infty}) \in M_n(\mathbb{C})^{m+2}, \sum_{j=0}^{\infty} A_j = 0, \}

A_0 = \begin{pmatrix}
* & 0 & 0 & 0 \\
1 & * & 0 & 0 \\
0 & \ddots & \ddots & 0 \\
0 & 0 & 1 & *
\end{pmatrix},

A_j (1 \leq j \leq m) = \begin{pmatrix}
* & * & * & * \\
0 & * & * & * \\
0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & *
\end{pmatrix} \}$$

Theorem 1 (van der Put & Singer [3])

*For any $L \in \mathcal{E}$, there exists $(A_0, \ldots, A_m, A_{\infty}) \in \mathcal{N}$ s.t. L is the minimal monic operator in W which annihilates the global section $e_1 = (1, 0 \ldots, 0) \in (\mathcal{O}_{\mathbb{P}^1})^n$ of the logarithmic connection $d - \sum_{j=0}^{m} A_j \frac{dz}{z-s_j}$.***

Definition of ∇_0

We fix $\nabla_0 = (A^0_0, \ldots, A^0_m, A^0_{\infty}) \in \mathcal{N}$, one of the possible tuples for L_0 given by Theorem 1.
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction
Starting Point L_0
Deformation Space of L_0 as Operator
From L_0 to ∇_0
Deformation Space of ∇_0 as Logarithmic Connection and its Symplectic Structure
Local Embedding of E_0 in \mathcal{M}_0
Locally from E_0 into N_0
From N_0 into \mathcal{M}_0
Symplectic property of E_0 into \mathcal{M}_0

Summary Diagram

$\mathcal{N} \ni \nabla_0$

$\varphi (Thm.1)$

$E \ni L_0 \rightarrow E_0$
Constructing O

For any $j \in \{0, \ldots, \infty\}$, denote by O_j the conjugacy class of A_j^0:

$$O_j = \text{GL}_n(\mathbb{C}).A_j^0$$

and set

$$O = O_0 \times \cdots \times O_m \times O_{\infty}$$
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation

Space of L_0 as Operator

From L_0 to ∇_0

Deformation

Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of E_0 in \mathcal{M}_0

Locally from E_0 into \mathcal{N}_0

From \mathcal{N}_0 into \mathcal{M}_0

Symplectic property of E_0 into \mathcal{M}_0

Space of Deformations of ∇_0 as Log. Connection

Construction of \mathcal{O}

For any $j \in \{0, \ldots, \infty\}$, denote by \mathcal{O}_j the conjugacy class of A_j^0:

$$\mathcal{O}_j = \text{GL}_n(\mathbb{C}).A_j^0$$

and set

$$\mathcal{O} = \mathcal{O}_0 \times \cdots \times \mathcal{O}_m \times \mathcal{O}_\infty$$

Definition of the symplectic form ω on \mathcal{O}

\mathcal{O} is (almost) canonically endowed with the symplectic form $\omega \in \Omega^2_{\mathcal{O}}$:

$$\forall A = (A_0, \ldots, A_\infty) \in \mathcal{O}, \quad \forall (B^1, B^2) \in (T_A \mathcal{O})^2,$$

$$\omega_A(B^1, B^2) = \sum_{j=0}^{\infty} \text{Tr}(A_j[U_j^1, U_j^2]),$$

where the U_j^k's satisfy

$$\forall k = 1, 2 \quad \forall j = 0 \ldots \infty, \quad B_j^k = [U_j^k, A_j]$$
Definition of \mathcal{M}_0

We apply \textbf{symplectic reduction} to some open neighborhood $\mathcal{V}_0 \subset \mathcal{O}$ of ∇_0

$$\mathcal{V}_0 \subset \{(A_0, \ldots, A_\infty), \cap_{j=0}^m \text{Com}(A_j) = \mathbb{C} \times I_n\}$$

for diagonal adjoint action of $\text{GL}_n(\mathbb{C})$ and moment map

$$\Phi : (A_0, \ldots, A_\infty) \mapsto \sum_{j=0}^{\infty} A_j$$

at its regular value 0:

$$\mathcal{V}_0 \cap \Phi^{-1}(\{0\}) \xrightarrow{\pi} \mathcal{M}_0 := \Phi^{-1}(\{0\})/\text{GL}_n(\mathbb{C}).$$
Definition of \mathcal{M}_0

We apply symplectic reduction to some open neighborhood $\mathcal{V}_0 \subset \mathcal{O}$ of ∇_0

\[\mathcal{V}_0 \subset \{(A_0, \ldots, A_\infty), \cap_{j=0}^m \text{Com}(A_j) = \mathbb{C} \times I_n\} \]

for diagonal adjoint action of $GL_n(\mathbb{C})$ and moment map

\[\Phi : (A_0, \ldots, A_\infty) \mapsto \sum_{j=0}^{\infty} A_j \]

at its regular value 0:

\[\mathcal{V}_0 \cap \Phi^{-1}(\{0\}) \xrightarrow{\pi} \mathcal{M}_0 := \Phi^{-1}(\{0\}) / GL_n(\mathbb{C}). \]

Then, \mathcal{M}_0 is the local **moduli space of deformations of ∇_0 as logarithmic connection with the same local monodromies as ∇_0 (and thereby, as L_0).**

The form ω induces on \mathcal{M}_0 a structure of symplectic complex manifold, and $\text{dim}(\mathcal{M}_0) = 2g$.
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation

Space of L_0 as Operator

From L_0 to ∇_0

Deformation

Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of E_0 in M_0

Locally from E_0 into N_0

From N_0 into M_0

Symplectic property of E_0 into M_0

Summary Diagram
For any $j \in \{0, \ldots, m\}$, let $(\lambda_{1j}, \ldots, \lambda_{nj}) \in \mathbb{C}^n$ be the diagonal of the matrix A_j^0.

Definition of \mathcal{N}_0

\[
\mathcal{N}_0 := \left\{ (A_0, \ldots, A_\infty) \in \mathcal{N} \cap \mathcal{O} \mid (j=1, \ldots, m) \right\}
\]

\[
A_0 = \begin{pmatrix}
\lambda_{1,0} & 0 & 0 & 0 \\
1 & \lambda_{2,0} & 0 & 0 \\
0 & \ddots & \ddots & 0 \\
0 & 0 & 1 & \lambda_{n,0}
\end{pmatrix},
A_j = \begin{pmatrix}
\lambda_{1j} & * & * & * \\
0 & \lambda_{2j} & * & * \\
0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & \lambda_{nj}
\end{pmatrix}
\]
Introduction

Starting Point L_0

Deformation

Space of L_0 as Operator

From L_0 to ∇_0

Deformation

Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of E_0 in M_0

Locally from E_0 into N_0

From N_0 into M_0

Symplectic property of E_0 into M_0
Embedding of \((\mathcal{E}_0, L_0)\) in \((\mathcal{N}_0, \nabla_0)\)

Following van der Put & Singer, we introduce the map

\[
\varphi : \mathcal{N}_0 \to W, \varphi(\nabla) := \left(\frac{1}{P}\right)^n L_n(\nabla),
\]

where \(L_n(\nabla)\) is defined as follows. For any \(\nabla = (A_0, \ldots, A_m, A_\infty) \in \mathcal{N}_0\), let \((A_{x,y})_{x \leq y}\) be the polynomials in \(\mathbb{C}[z]\) defined by

\[
\sum_{j=0}^{m} \frac{A_j}{z - s_j} = \frac{1}{P} \begin{pmatrix}
A_{1,1} & zA_{1,2} & \cdots & zA_{1,n} \\
P_0 & A_{2,2} & \ddots & \vdots \\
0 & \ddots & \ddots & zA_{n-1,n} \\
0 & 0 & \ldots & P_0 & A_{n,n}
\end{pmatrix}
\]
Let \(M_i = Pd/dz - A_{i,i} - (i - 1)zP_0' \), \(L_0(\nabla) = 1 \) and define \(L_k(\nabla) \in \mathbb{C}[z][P \cdot d/dz], k \geq 1 \), by

\[L_k(\nabla) = M_k L_{k-1}(\nabla) - P A_{k-1,i} L_{k-2}(\nabla) - PP_0 A_{k,k-1} L_{k-3}(\nabla) - \cdots - PP_0^{i-2} A_{k,1} L_0(\nabla) \]

Then (Thm. 1), \(\varphi(\nabla) \) is the minimal monic annihilator in \(W \) of \(e_1 \) for the logarithmic connection \(d - \sum_{j=0}^{m} A_j \frac{dz}{z-s_j} \), and

Proposition 1

- \(\varphi(\text{Connected component of } \nabla_0 \text{ in } \mathcal{N}_0) \subset \mathcal{E}_0 \)
- \(T_{\nabla_0} \varphi : T_{\nabla_0} \mathcal{N}_0 \rightarrow T_{L_0} \mathcal{E}_0 \) is an isomorphism. We can therefore consider

\[\psi = \varphi^{-1} : (\mathcal{E}_0, L_0) \rightarrow (\mathcal{N}_0, \nabla_0) \]
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction
Starting Point L_0
Deformation Space of L_0 as Operator
From L_0 to ∇_0
Deformation Space of ∇_0 as Logarithmic Connection and its Symplectic Structure
Local Embedding of E_0 in \mathcal{M}_0
Locally from E_0 into \mathcal{N}_0
From \mathcal{N}_0 into \mathcal{M}_0
Symplectic property of E_0 into \mathcal{M}_0
Embedding of \((\mathcal{N}_0, \nabla_0)\) into \((\mathcal{M}_0, \nabla_0)\)

Proposition 2

- \(\dim(\mathcal{N}_0) = \frac{1}{2} \dim(\mathcal{M}_0)\) (which is equal to \(g\)).
- For any \(\nabla \in \mathcal{N}_0\), \(\text{GL}_n(\mathbb{C}).\nabla \cap \mathcal{N}_0 = \{\nabla\}\).
- \(\mathcal{N}_0(\subset \Phi^{-1}(\{0\}) \cap \mathcal{V}_0)\) embeds in \(\mathcal{M}_0\) via \(\pi\).
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point \(L_0 \)

Deformation Space of \(L_0 \) as Operator

From \(L_0 \) to \(\nabla_0 \)

Deformation Space of \(\nabla_0 \) as Logarithmic Connection and its Symplectic Structure

Local Embedding of \(\mathcal{E}_0 \) in \(\mathcal{M}_0 \)

Locally from \(\mathcal{E}_0 \) into \(\mathcal{N}_0 \)

From \(\mathcal{N}_0 \) into \(\mathcal{M}_0 \)

Symplectic property of \(\mathcal{E}_0 \) into \(\mathcal{M}_0 \)
Symplectic Properties of the Space of Fuchsian Equations in the Moduli Space of Logarithmic Connections

Jonathan Aidan

Introduction

Starting Point L_0

Deformation

Space of L_0 as Operator

From L_0 to ∇_0

Deformation

Space of ∇_0 as Logarithmic Connection and its Symplectic Structure

Local Embedding of \mathcal{E}_0 in \mathcal{M}_0

Locally from \mathcal{E}_0 into \mathcal{N}_0

From \mathcal{N}_0 into \mathcal{M}_0

Symplectic property of \mathcal{E}_0 into \mathcal{M}_0

Summary Diagram
Via these local embeddings, we may view the tangent space of \mathcal{E}_0 at L_0 as a subspace of the tangent space of \mathcal{M}_0 at ∇_0, and we have:

Theorem 2

(\mathcal{E}_0, L_0) is a Lagrangian submanifold of $(\mathcal{M}_0, \nabla_0)$ (via $\pi \circ \psi$).

N.B.: related results by Dubrovin-Mazzocco [2] (Darboux-coordinates on \mathcal{M}), and by S. Szabo [4] (Katz’s question on Hodge structures).

The dimension of \mathcal{E}_0 is half the dimension of \mathcal{M}_0 so it is sufficient to prove that \mathcal{N}_0 is an isotropic submanifold of \mathcal{O} relatively to ω. The proof of the latter statement consists in checking that the local contribution of each singularity to the expression $\omega_A(B^1, B^2) = \sum_{j=0}^{\infty} \text{Tr}(A_j[U^1_j, U^2_j])$ vanishes. The only difficulty lies at ∞, which is dealt with as follows.
Proposition

Let $\nabla = (*, \ldots, *, A_\infty) \in \mathcal{N}_0$, let $(*, \ldots, *, B_\infty) \in T_{\nabla} \mathcal{N}_0$ and let $U \in M_n(\mathbb{C})$ satisfy $B_\infty = [U, A_\infty]$. Then, there exists a strictly upper-triangular matrix $U_\infty \in T^+$ such that $B_\infty = [U_\infty, A_\infty]$.

This follows from the fact that for $k \in \mathbb{N}$, A^k_∞ is lower-triangular of order k, with $(-1)^k$ on the k-th diagonal, together with

Lemma

Same hypotheses as in Proposition 3. Let $e = (e_1, \ldots, e_n)$ be the standard basis of $E := \mathbb{C}^n$, and let $a, b, u \in \text{End}(E)$, represented in e by A_∞, B_∞, U. Let $\{E_i, i = 1, \ldots, n\}$ be the flag associated to e, and set $E_{-1} = E_0 = \{0\}$. Finally, consider the map $\chi : \{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ which attaches to i the unique integer $\chi(i) \in \{0, \ldots, n\}$ s.t. $u(e_i) \in E_{\chi(i)} \setminus E_{\chi(i)-1}$. Then,

- $\forall i \in \{1, \ldots, n - 1\}$, $a(E_i \setminus E_{i-1}) \subset E_{i+1} \setminus E_i$.
- If $\chi \leq n - 1$, then $\forall i = 1, \ldots, n - 1$, $\chi(i) \leq n - 2$.

