Associative algebras associated to étale groupoids and inverse semigroups

Benjamin Steinberg, City College of New York

May 11, 2014
Partial Actions and Representations Symposium
Introduction

Groupoid Algebras

Representation Theory

Inverse semigroups

Future work
Background

- Groupoid C^*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault’s influential monograph.
Background

- Groupoid C^*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault’s influential monograph.
- They simultaneously generalize:
Background

- Groupoid C^*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault’s influential monograph.
- They simultaneously generalize:
 - commutative C^*-algebras
Background

- Groupoid C^*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault’s influential monograph.
- They simultaneously generalize:
 - commutative C^*-algebras
 - group C^*-algebras
Background

- Groupoid C^*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault’s influential monograph.
- They simultaneously generalize:
 - commutative C^*-algebras
 - group C^*-algebras
 - group action C^*-algebras
Background

- Groupoid C^\ast-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault’s influential monograph.
- They simultaneously generalize:
 - commutative C^\ast-algebras
 - group C^\ast-algebras
 - group action C^\ast-algebras
 - Cuntz-Krieger/graph C^\ast-algebras
Background

- Groupoid C^*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault’s influential monograph.
- They simultaneously generalize:
 - commutative C^*-algebras
 - group C^*-algebras
 - group action C^*-algebras
 - Cuntz-Krieger/graph C^*-algebras
 - inverse semigroup C^*-algebras.
Background

- Groupoid C^*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault’s influential monograph.
- They simultaneously generalize:
 - commutative C^*-algebras
 - group C^*-algebras
 - group action C^*-algebras
 - Cuntz-Krieger/graph C^*-algebras
 - inverse semigroup C^*-algebras.
- Algebraic properties can often be seen from the groupoid.
Background

- Groupoid C^*-algebras have been a fruitful and unifying notion in the theory of operator algebras since J. Renault’s influential monograph.
- They simultaneously generalize:
 - commutative C^*-algebras
 - group C^*-algebras
 - group action C^*-algebras
 - Cuntz-Krieger/graph C^*-algebras
 - inverse semigroup C^*-algebras.
- Algebraic properties can often be seen from the groupoid.
- Morita equivalence of groupoid algebras is often explained by a Morita equivalence of the groupoids.
Étale groupoids

• Étale groupoids form one of the most important classes of groupoids.
Étale groupoids

- Étale groupoids form one of the most important classes of groupoids.
- $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1)$ is étale if $d: \mathcal{G}_1 \to \mathcal{G}_0$ is a local homeomorphism.
Étale groupoids

- **Étale groupoids** form one of the most important classes of groupoids.
- $\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1)$ is étale if $d: \mathcal{G}_1 \to \mathcal{G}_0$ is a local homeomorphism.
- We assume that \mathcal{G}_0 is locally compact Hausdorff, but \mathcal{G}_1 need not be Hausdorff.
Étale groupoids

- Étale groupoids form one of the most important classes of groupoids.
- \(\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1) \) is étale if \(d: \mathcal{G}_1 \to \mathcal{G}_0 \) is a local homeomorphism.
- We assume that \(\mathcal{G}_0 \) is locally compact Hausdorff, but \(\mathcal{G}_1 \) need not be Hausdorff.
- An étale groupoid \(\mathcal{G} \) is ample if \(\mathcal{G}_0 \) has a basis of compact open sets.
Étale groupoids

- Étale groupoids form one of the most important classes of groupoids.
- \(G = (G_0, G_1) \) is étale if \(d: G_1 \to G_0 \) is a local homeomorphism.
- We assume that \(G_0 \) is locally compact Hausdorff, but \(G_1 \) need not be Hausdorff.
- An étale groupoid \(G \) is ample if \(G_0 \) has a basis of compact open sets.
- Many of the most important examples come from ample groupoids: discrete group algebras, Cuntz-Krieger/graph algebras and inverse semigroup algebras.
Étale groupoids

- Étale groupoids form one of the most important classes of groupoids.
- \(\mathcal{G} = (\mathcal{G}_0, \mathcal{G}_1) \) is étale if \(d : \mathcal{G}_1 \to \mathcal{G}_0 \) is a local homeomorphism.
- We assume that \(\mathcal{G}_0 \) is locally compact Hausdorff, but \(\mathcal{G}_1 \) need not be Hausdorff.
- An étale groupoid \(\mathcal{G} \) is ample if \(\mathcal{G}_0 \) has a basis of compact open sets.
- Many of the most important examples come from ample groupoids: discrete group algebras, Cuntz-Krieger/graph algebras and inverse semigroup algebras.
- Counting measure gives a left Haar system in this context.
Discrete analogues

- Many groupoid C^*-algebras have analogues in the context of associative algebras.
Discrete analogues

- Many groupoid C^*-algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
Discrete analogues

- Many groupoid C^*-algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
- **Leavitt path algebras** are discrete analogues of Cuntz-Krieger algebras.
Discrete analogues

- Many groupoid C^*-algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
- Leavitt path algebras are discrete analogues of Cuntz-Krieger algebras.
- Discrete analogues of algebras of higher rank graphs have also been considered.
Discrete analogues

- Many groupoid C^*-algebras have analogues in the context of associative algebras.
- Group algebras and inverse semigroup algebras are obvious examples.
- Leavitt path algebras are discrete analogues of Cuntz-Krieger algebras.
- Discrete analogues of algebras of higher rank graphs have also been considered.
- Surprising similarities between operator algebras and their discrete analogues have been known for some time.
History

• In 2009 I introduced a discrete analogue of groupoid C^*-algebras for ample groupoids.
History

- In 2009 I introduced a discrete analogue of groupoid C^*-algebras for ample groupoids.
- My hope was that it would explain many of the similarities between the discrete and continuous setting, especially for Leavitt-Path algebras.
History

- In 2009 I introduced a discrete analogue of groupoid C^*-algebras for ample groupoids.
- My hope was that it would explain many of the similarities between the discrete and continuous setting, especially for Leavitt-Path algebras.
- Initially, I focused on applications to inverse semigroup algebras.
History

• In 2009 I introduced a discrete analogue of groupoid C^*-algebras for ample groupoids.

• My hope was that it would explain many of the similarities between the discrete and continuous setting, especially for Leavitt-Path algebras.

• Initially, I focused on applications to inverse semigroup algebras.

• Groupoid algebras over \mathbb{C} were rediscovered later by L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who kindly dubbed them “Steinberg algebras.”
History

- In 2009 I introduced a discrete analogue of groupoid C^*-algebras for ample groupoids.
- My hope was that it would explain many of the similarities between the discrete and continuous setting, especially for Leavitt-Path algebras.
- Initially, I focused on applications to inverse semigroup algebras.
- Groupoid algebras over \mathbb{C} were rediscovered later by L. O. Clark, C. Farthing, A. Sims and M. Tomforde, who kindly dubbed them “Steinberg algebras.”
- My hopes have since been borne out by J. Brown, L. O. Clark, C. Farthing, A. Sims and M. Tomforde who produce new results faster than I can keep up with.
Groupoid algebras

• \(k \) is a commutative ring with unit endowed with the discrete topology.
Groupoid algebras

- \mathbb{k} is a commutative ring with unit endowed with the discrete topology.
- \mathcal{G} is an ample groupoid.
Groupoid algebras

- \(k \) is a commutative ring with unit endowed with the discrete topology.
- \(\mathcal{G} \) is an ample groupoid.
- \(k\mathcal{G} \) denotes the continuous \(k \)-valued functions on \(\mathcal{G} \) with compact support (adjusted as usual for non-Hausdorff).
Groupoid algebras

- k is a commutative ring with unit endowed with the discrete topology.
- G is an ample groupoid.
- kG denotes the continuous k-valued functions on G with compact support (adjusted as usual for non-Hausdorff).
- Ample implies there are many such functions.
Groupoid algebras

- k is a commutative ring with unit endowed with the discrete topology.
- G is an ample groupoid.
- kG denotes the continuous k-valued functions on G with compact support (adjusted as usual for non-Hausdorff).
- Ample implies there are many such functions.
- The product is convolution:

$$f \ast g(x) = \sum_{d(x)=d(z)} f(xz^{-1})g(z).$$
Groupoid algebras

• \(\mathbb{k} \) is a commutative ring with unit endowed with the discrete topology.
• \(\mathcal{G} \) is an ample groupoid.
• \(\mathbb{k}\mathcal{G} \) denotes the continuous \(\mathbb{k} \)-valued functions on \(\mathcal{G} \) with compact support (adjusted as usual for non-Hausdorff).
• Ample implies there are many such functions.
• The product is convolution:

\[
 f \ast g(x) = \sum_{d(x)=d(z)} f(xz^{-1})g(z).
\]

• The sum is finite because fibers of \(d \) are discrete and \(f, g \) have compact support.
Groupoid algebras II

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
Groupoid algebras II

- $C^*(\mathcal{G})$ is the completion of $\mathbb{C}G$ (Stone-Weierstrass).
- If G is a discrete group, $\mathbb{k}G$ is the usual group algebra and similarly for discrete groupoids.
Groupoid algebras II

- $C^*(\mathcal{G})$ is the completion of $\mathcal{C}\mathcal{G}$ (Stone-Weierstrass).
- If G is a discrete group, kG is the usual group algebra and similarly for discrete groupoids.
- If $\mathcal{G} = \mathcal{G}_0$, the product on $k\mathcal{G}$ is pointwise multiplication.
$C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).

If \mathcal{G} is a discrete group, $k\mathcal{G}$ is the usual group algebra and similarly for discrete groupoids.

If $\mathcal{G} = \mathcal{G}_0$, the product on $k\mathcal{G}$ is pointwise multiplication.

$k\mathcal{G}$ is unital iff \mathcal{G}_0 is compact.
• $C^*(\mathcal{G})$ is the completion of $\mathbb{C}\mathcal{G}$ (Stone-Weierstrass).
• If \mathcal{G} is a discrete group, $\mathbb{k}\mathcal{G}$ is the usual group algebra and similarly for discrete groupoids.
• If $\mathcal{G} = \mathcal{G}_0$, the product on $\mathbb{k}\mathcal{G}$ is pointwise multiplication.
• $\mathbb{k}\mathcal{G}$ is unital iff \mathcal{G}_0 is compact.
• Leavitt path algebras can be obtained from the usual groupoid for graph C^*-algebras (see also later in the talk).
Local bisections

- An open subset $U \subseteq \mathcal{G}$ is a local bisection if $d|_U, r|_U$ are homeomorphisms to their images.
Local bisections

- An open subset $U \subseteq \mathcal{G}$ is a **local bisection** if $d|_U, r|_U$ are homeomorphisms to their images.
- Local bisections are closed under setwise product:

$$UV = \{uv \mid u \in U, v \in V\}.$$
Local bisections

- An open subset $U \subseteq \mathcal{G}$ is a **local bisection** if $d|_U, r|_U$ are homeomorphisms to their images.
- Local bisections are closed under setwise product:

$$UV = \{uv \mid u \in U, v \in V\}.$$

- The compact local bisections of an ample groupoid \mathcal{G} form an inverse semigroup $\Gamma(\mathcal{G})$.
Local bisections

- An open subset $U \subseteq \mathcal{G}$ is a local bisection if $d|_U, r|_U$ are homeomorphisms to their images.
- Local bisections are closed under setwise product:
 \[UV = \{ uv \mid u \in U, v \in V \}. \]
- The compact local bisections of an ample groupoid \mathcal{G} form an inverse semigroup $\Gamma(\mathcal{G})$.
- The map $\Gamma(\mathcal{G}) \to \mathbb{k}\mathcal{G}$ given by $U \mapsto \chi_U$ is an injective homomorphism.
Local bisections

- An open subset $U \subseteq \mathcal{G}$ is a local bisection if $d|_U, r|_U$ are homeomorphisms to their images.
- Local bisections are closed under setwise product:

$$UV = \{uv \mid u \in U, v \in V\}.$$

- The compact local bisections of an ample groupoid \mathcal{G} form an inverse semigroup $\Gamma(\mathcal{G})$.
- The map $\Gamma(\mathcal{G}) \to \mathbb{k}\mathcal{G}$ given by $U \mapsto \chi_U$ is an injective homomorphism.
- It extends to a surjective algebra homomorphism $\mathbb{k}\Gamma(\mathcal{G}) \to \mathbb{k}\mathcal{G}$.
Local bisections

- An open subset $U \subseteq G$ is a local bisection if $d|_U, r|_U$ are homeomorphisms to their images.
- Local bisections are closed under setwise product:

$$UV = \{uv \mid u \in U, v \in V\}.$$

- The compact local bisections of an ample groupoid G form an inverse semigroup $\Gamma(G)$.
- The map $\Gamma(G) \to \mathbb{k}G$ given by $U \mapsto \chi_U$ is an injective homomorphism.
- It extends to a surjective algebra homomorphism $\mathbb{k}\Gamma(G) \to \mathbb{k}G$.
- When G is Hausdorff, the kernel is generated by $\chi_U + \chi_V - \chi_{U \cup V}$ with U, V disjoint compact open subsets of G_0.
Isotropy

- The isotropy group G_x of $x \in G_0$ consists of all $g : x \rightarrow x$.
Isotropy

- The isotropy group G_x of $x \in G_0$ consists of all $g : x \rightarrow x$.
- The isotropy bundle $G_{iso} = \bigcup_{x \in X} G_x$.
Isotropy

- The isotropy group G_x of $x \in G_0$ consists of all $g : x \to x$.
- The isotropy bundle $G_{iso} = \bigcup_{x \in X} G_x$.
- G is effective if $\text{Int}(G_{iso}) = G_0$.

Theorem (BS) The class functions form the center of kG.

• The isotropy group G_x of $x \in G_0$ consists of all $g : x \to x$.
• The isotropy bundle $G_{iso} = \bigcup_{x \in X} G_x$.
• G is effective if $\text{Int}(G_{iso}) = G_0$.

Isotropy

- The isotropy group G_x of $x \in \mathcal{G}_0$ consists of all $g : x \rightarrow x$.
- The isotropy bundle $\mathcal{G}_{iso} = \bigcup_{x \in X} G_x$.
- \mathcal{G} is effective if $\text{Int}(\mathcal{G}_{iso}) = \mathcal{G}_0$.
- Effectiveness is equivalent to $\Gamma(\mathcal{G})$ acting faithfully on \mathcal{G}_0.

Isotropy

- The isotropy group G_x of $x \in G_0$ consists of all $g : x \to x$.
- The isotropy bundle $G_{iso} = \bigcup_{x \in X} G_x$.
- G is effective if $\text{Int}(G_{iso}) = G_0$.
- Effectiveness is equivalent to $\Gamma(G)$ acting faithfully on G_0.
- $f \in \mathbb{k}G$ is a class function if:
Isotropy

- The isotropy group G_x of $x \in G_0$ consists of all $g : x \rightarrow x$.
- The isotropy bundle $G_{iso} = \bigcup_{x \in X} G_x$.
- G is effective if $\text{Int}(G_{iso}) = G_0$.
- Effectiveness is equivalent to $\Gamma(G)$ acting faithfully on G_0.
- $f \in \mathbb{k}G$ is a class function if:
 - $\text{supp}(f) \subseteq G_{iso}$
Isotropy

- The isotropy group G_x of $x \in G_0$ consists of all $g : x \rightarrow x$.
- The isotropy bundle $G_{iso} = \bigcup_{x \in X} G_x$.
- G is effective if $\text{Int}(G_{iso}) = G_0$.
- Effectiveness is equivalent to $\Gamma(G)$ acting faithfully on G_0.
- $f \in kG$ is a class function if:
 - $\text{supp}(f) \subseteq G_{iso}$
 - $f(ghg^{-1}) = f(h)$.

Theorem (BS) The class functions form the center of kG.
Isotropy

- The isotropy group G_x of $x \in G_0$ consists of all $g : x \to x$.
- The isotropy bundle $G_{iso} = \bigcup_{x \in X} G_x$.
- G is effective if $\text{Int}(G_{iso}) = G_0$.
- Effectiveness is equivalent to $\Gamma(G)$ acting faithfully on G_0.
- $f \in \mathbb{k}G$ is a class function if:
 - $\text{supp}(f) \subseteq G_{iso}$
 - $f(ghg^{-1}) = f(h)$.

Theorem (BS)

The class functions form the center of $\mathbb{k}G$.
Orbits and minimality

- The orbit of $x \in G_0$ consists of all y such that $g : x \rightarrow y$ exists.
Orbits and minimality

- The orbit of $x \in \mathcal{G}_0$ consists of all y such that $g: x \to y$ exists.
- \mathcal{G} is minimal if every orbit is dense.
Orbits and minimality

• The orbit of $x \in \mathcal{G}_0$ consists of all y such that $g: x \rightarrow y$ exists.
• \mathcal{G} is minimal if every orbit is dense.

Theorem (L. O. Clark, C. Edie-Michelle)

Let \mathcal{G} be a minimal, Hausdorff ample groupoid.
Orbits and minimality

- The orbit of \(x \in G_0 \) consists of all \(y \) such that \(g : x \to y \) exists.
- \(G \) is minimal if every orbit is dense.

Theorem (L. O. Clark, C. Edie-Michelle)

Let \(G \) be a minimal, Hausdorff ample groupoid.

1. If \(G_0 \) is compact and \(G \) is effective, then \(Z(kG) = k1_{G_0} \).
Orbits and minimality

- The orbit of $x \in \mathcal{G}_0$ consists of all y such that $g : x \rightarrow y$ exists.
- \mathcal{G} is minimal if every orbit is dense.

Theorem (L. O. Clark, C. Edie-Michelle)

Let \mathcal{G} be a minimal, Hausdorff ample groupoid.

1. If \mathcal{G}_0 is compact and \mathcal{G} is effective, then $Z(\mathbb{k}\mathcal{G}) = \mathbb{k}1_{\mathcal{G}_0}$.
2. If \mathcal{G}_0 is not compact, then $Z(\mathbb{k}\mathcal{G}) = 0$.
Simplicity

Theorem (L. O. Clark, C. Edie-Michelle)

Let \mathcal{G} be a Hausdorff ample groupoid and k a field. Then $k\mathcal{G}$ is simple if and only if \mathcal{G} is effective and minimal.
Theorem (L. O. Clark, C. Edie-Michelle)

Let \mathcal{G} be a Hausdorff ample groupoid and \mathbb{k} a field. Then $\mathbb{k}\mathcal{G}$ is simple if and only if \mathcal{G} is effective and minimal.

- This was first proved by J.H. Brown, L.O. Clark, C. Farthing and A. Sims over \mathbb{C}.
Morita equivalence

- If Z is a locally compact space and $f: Z \to G_0$ is continuous, there is a pullback groupoid $G[Z]$.

Theorem (L. O. Clark, A. Sims) If G and H are Morita equivalent, Hausdorff ample groupoids, then kG is Morita equivalent to kH.

Explains why the same moves preserve Morita equivalence between graph C^*-algebras and Leavitt path algebras.
Morita equivalence

- If Z is a locally compact space and $f: Z \to G_0$ is continuous, there is a pullback groupoid $G[Z]$.
- $G[Z]_0 = Z$, $G[Z]_1 = \{(z, g, z') \mid g: f(z) \to f(z')\}$.

Theorem (L. O. Clark, A. Sims): If G and H are Morita equivalent, Hausdorff ample groupoids, then kG is Morita equivalent to kH.

Explains why the same moves preserve Morita equivalence between graph C^*-algebras and Leavitt path algebras.
Morita equivalence

- If \(Z \) is a locally compact space and \(f: Z \to G_0 \) is continuous, there is a pullback groupoid \(G[Z] \).
- \(G[Z]_0 = Z, G[Z]_1 = \{ (z, g, z') \mid g: f(z) \to f(z') \} \).
- Groupoids \(G \) and \(H \) are **Morita equivalent** if there is a locally compact space \(Z \) and continuous open surjections \(p: Z \to G_0 \) and \(q: Z \to H_0 \) such that \(G[Z] \cong H[Z] \).
Morita equivalence

- If Z is a locally compact space and $f: Z \to G_0$ is continuous, there is a pullback groupoid $G[Z]$.
- $G[Z]_0 = Z$, $G[Z]_1 = \{(z, g, z') | g: f(z) \to f(z')\}$.
- Groupoids G and H are Morita equivalent if there is a locally compact space Z and continuous open surjections $p: Z \to G_0$ and $q: Z \to H_0$ such that $G[Z] \cong H[Z]$.

Theorem (L. O. Clark, A. Sims)

If G and H are Morita equivalent, Hausdorff ample groupoids, then kG is Morita equivalent to kH.
Morita equivalence

- If Z is a locally compact space and $f: Z \to G_0$ is continuous, there is a pullback groupoid $G[Z]$.
- $G[Z]_0 = Z$, $G[Z]_1 = \{(z, g, z') \mid g: f(z) \to f(z')\}$.
- Groupoids G and H are Morita equivalent if there is a locally compact space Z and continuous open surjections $p: Z \to G_0$ and $q: Z \to H_0$ such that $G[Z] \cong H[Z]$.

Theorem (L. O. Clark, A. Sims)

If G and H are Morita equivalent, Hausdorff ample groupoids, then kG is Morita equivalent to kH.

- Explains why the same moves preserve Morita equivalence between graph C^*-algebras and Leavitt path algebras.
Schützenberger representations

- Fix \(x \in G_0 \).
Schützenberger representations

• Fix $x \in G_0$.
• Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
Schützenberger representations

- Fix $x \in G_0$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x.

Schützenberger representations

- Fix $x \in G_0$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x.
- So kL_x is a free kG_x-module.
Schützenberger representations

- Fix $x \in G_0$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x.
- So kL_x is a free kG_x-module.
- It is in fact a kG-kG_x-bimodule.
Schützenberger representations

- Fix $x \in G_0$.
- Let $L_x = d^{-1}(x)$ be the arrows emanating from x.
- The isotropy group G_x acts freely on the right of L_x.
- So kL_x is a free kG_x-module.
- It is in fact a kG-kG_x-bimodule.
- If $f \in kG$ and $t \in L_x$, then

$$f \cdot t = \sum_{d(s) = r(t)} f(s)st.$$

There is an exact functor $\text{Ind}_x : \mathbb{k}G_x\text{-mod} \rightarrow \mathbb{k}G\text{-mod}$ given by

$$M \mapsto \mathbb{k}L_x \otimes_{\mathbb{k}G_x} M.$$
Induction and restriction functors

- There is an exact functor \(\text{Ind}_x : \mathbb{k}G_x\text{-mod} \to \mathbb{k}G\text{-mod} \) given by
 \[
 M \mapsto \mathbb{k}L_x \otimes_{\mathbb{k}G_x} M.
 \]

- It has a right adjoint \(\text{Res}_x : \mathbb{k}G\text{-mod} \to \mathbb{k}G_x\text{-mod} \).
Induction and restriction functors

- There is an exact functor $\text{Ind}_x : \mathbb{k}G_x\text{-mod} \to \mathbb{k}G\text{-mod}$ given by
 \[M \mapsto \mathbb{k}L_x \otimes_{\mathbb{k}G_x} M. \]
- It has a right adjoint $\text{Res}_x : \mathbb{k}G\text{-mod} \to \mathbb{k}G_x\text{-mod}$.
- Ind_x preserves simple modules.
Induction and restriction functors

- There is an exact functor $\text{Ind}_x : \mathbb{k}G_x\text{-mod} \to \mathbb{k}G\text{-mod}$ given by
 $$M \mapsto \mathbb{k}L_x \otimes_{\mathbb{k}G_x} M.$$

- It has a right adjoint $\text{Res}_x : \mathbb{k}G\text{-mod} \to \mathbb{k}G_x\text{-mod}$.
- Ind_x preserves simple modules.
- Res_x sends simple modules to simple modules or 0.
Induction and restriction functors

- There is an exact functor $\text{Ind}_x : \mathbb{k}G_x\text{-mod} \to \mathbb{k}G\text{-mod}$ given by

 $$M \mapsto \mathbb{k}L_x \otimes_{\mathbb{k}G_x} M.$$

- It has a right adjoint $\text{Res}_x : \mathbb{k}G\text{-mod} \to \mathbb{k}G_x\text{-mod}$.

- Ind_x preserves simple modules.

- Res_x sends simple modules to simple modules or 0.

Theorem (BS)

Let \mathbb{k} be a field and \mathcal{G} an ample groupoid. Then the finite dimensional simple $\mathbb{k}G$-modules are those of the form $\text{Ind}_x(M)$ with the orbit of x finite and M a finite dimensional simple $\mathbb{k}G_x$-module.
Action on orbits

- $k L_x \otimes_{kG_x} k = kO_x$ where O_x is the orbit of x.
Action on orbits

- \(\mathbb{k}L_x \otimes_{\mathbb{k}G_x} \mathbb{k} = \mathbb{k}O_x \) where \(O_x \) is the orbit of \(x \).
- The action is
 \[
 f \cdot y = \sum_{d(s)=y} f(s)r(s).
 \]
Action on orbits

- \(kL_x \otimes_{kG_x} k = kO_x \) where \(O_x \) is the orbit of \(x \).
- The action is
 \[
 f \cdot y = \sum_{d(s)=y} f(s)r(s).
 \]
- This is a simple \(kG \)-module.
Action on orbits

- $k L_x \otimes_{k G_x} k = k O_x$ where O_x is the orbit of x.
- The action is
 $$f \cdot y = \sum_{d(s)=y} f(s)r(s).$$
- This is a simple $k G$-module.
- Using ideas from the proof of the simplicity criterion, one can show that G is effective iff $\bigoplus_{x \in G_0} k O_x$ is faithful.
Action on orbits

- $kL_x \otimes_{kG_x} k = kO_x$ where O_x is the orbit of x.
- The action is

$$f \cdot y = \sum_{d(s) = y} f(s)r(s).$$

- This is a simple kG-module.
- Using ideas from the proof of the simplicity criterion, one can show that G is effective iff $\bigoplus_{x \in G_0} kO_x$ is faithful.

Theorem (BS, unpublished)

Let G be an effective, Hausdorff ample groupoid.
Action on orbits

- \(kL_x \otimes_{kG_x} k = kO_x \) where \(O_x \) is the orbit of \(x \).

- The action is

\[
 f \cdot y = \sum_{d(s) = y} f(s)r(s).
\]

- This is a simple \(kG \)-module.

- Using ideas from the proof of the simplicity criterion, one can show that \(G \) is effective iff \(\bigoplus_{x \in G_0} kO_x \) is faithful.

Theorem (BS, unpublished)

Let \(G \) be an effective, Hausdorff ample groupoid.

1. *If \(k \) semiprimitive, then \(kG \) is semiprimitive.*
Action on orbits

- $\mathbb{k}L_x \otimes_{\mathbb{k}G_x} \mathbb{k} = \mathbb{k}O_x$ where O_x is the orbit of x.
- The action is
 \[f \cdot y = \sum_{d(s) = y} f(s)r(s). \]
- This is a simple $\mathbb{k}G$-module.
- Using ideas from the proof of the simplicity criterion, one can show that G is effective iff $\bigoplus_{x \in G_0} \mathbb{k}O_x$ is faithful.

Theorem (BS, unpublished)

Let G *be an effective, Hausdorff ample groupoid.*

1. If \mathbb{k} semiprimitive, then $\mathbb{k}G$ is semiprimitive.
2. If \mathbb{k} is a field and G has a dense orbit, then $\mathbb{k}G$ is primitive.
Inverse semigroups

• An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that

$$ss^*s = s \quad \text{and} \quad s^*ss^* = s^*.$$
Inverse semigroups

- An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that
 \[ss^* s = s \quad \text{and} \quad s^* ss^* = s^*. \]

- Groups are inverse semigroups.
Inverse semigroups

- An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that
 \[ss^*s = s \quad \text{and} \quad s^*ss^* = s^*. \]

- Groups are inverse semigroups.
- The idempotents $E(S)$ commute and form a subsemigroup.
Inverse semigroups

- An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$.

- Groups are inverse semigroups.
- The idempotents $E(S)$ commute and form a subsemigroup.
- S is partially ordered by $s \leq t$ if $s = te$ for some $e \in E(S)$.
Inverse semigroups

- An **inverse semigroup** is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that
 \[ss^* s = s \quad \text{and} \quad s^* ss^* = s^*. \]

- Groups are inverse semigroups.
- The idempotents $E(S)$ commute and form a subsemigroup.
- S is partially ordered by $s \leq t$ if $s = te$ for some $e \in E(S)$.
- $E(S)$ is a semilattice with $e \land f = ef$.
Inverse semigroups

- An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$.

- Groups are inverse semigroups.
- The idempotents $E(S)$ commute and form a subsemigroup.
- S is partially ordered by $s \leq t$ if $s = te$ for some $e \in E(S)$.
- $E(S)$ is a semilattice with $e \wedge f = ef$.
- The pseudogroup of all homeomorphisms between open subsets of a topological space is an inverse semigroup.
Inverse semigroups

- An inverse semigroup is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that
 \[ss^*s = s \quad \text{and} \quad s^*ss^* = s^*. \]

- Groups are inverse semigroups.
- The idempotents $E(S)$ commute and form a subsemigroup.
- S is partially ordered by $s \leq t$ if $s = te$ for some $e \in E(S)$.
- $E(S)$ is a semilattice with $e \land f = ef$.
- The pseudogroup of all homeomorphisms between open subsets of a topological space is an inverse semigroup.
- The order here is restriction.
Inverse semigroups

• An **inverse semigroup** is a semigroup S such that, for all $s \in S$, there exists unique $s^* \in S$ such that
 \[ss^*s = s \quad \text{and} \quad s^*ss^* = s^*. \]

• Groups are inverse semigroups.
• The idempotents $E(S)$ commute and form a subsemigroup.
• S is partially ordered by $s \leq t$ if $s = te$ for some $e \in E(S)$.
• $E(S)$ is a **semilattice** with $e \wedge f = ef$.
• The pseudogroup of all homeomorphisms between open subsets of a topological space is an inverse semigroup.
• The order here is restriction.
• Often we will assume S has a zero element.
Actions of inverse semigroups

- Let X be a Hausdorff topological space with a basis of compact open sets.
Actions of inverse semigroups

- Let X be a Hausdorff topological space with a basis of compact open sets.
- Suppose that S acts on X by homeomorphisms between compact open subsets.
Actions of inverse semigroups

- Let X be a Hausdorff topological space with a basis of compact open sets.
- Suppose that S acts on X by homeomorphisms between compact open subsets.
- We can form a groupoid of germs $S \ltimes X$.
Actions of inverse semigroups

- Let X be a Hausdorff topological space with a basis of compact open sets.
- Suppose that S acts on X by homeomorphisms between compact open subsets.
- We can form a groupoid of germs $S \ltimes X$.
- For group actions, this is the usual action groupoid.
Paterson’s universal groupoid

- Let $\widehat{E(S)} \subseteq \{0, 1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi : E(S) \to \{0, 1\}$.
Paterson’s universal groupoid

- Let $\hat{E}(S) \subseteq \{0, 1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi : E(S) \to \{0, 1\}$.
- S acts on $\hat{E}(S)$ by $s \cdot \chi(e) = \chi(s^*es)$.
Paterson's universal groupoid

- Let $\hat{E}(S) \subseteq \{0, 1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi: E(S) \to \{0, 1\}$.
- S acts on $\hat{E}(S)$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.
Paterson’s universal groupoid

- Let $\widehat{E(S)} \subseteq \{0, 1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi: E(S) \to \{0, 1\}$.
- S acts on $\widehat{E(S)}$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.
- The universal groupoid $\mathcal{G}(S)$ is $S \rtimes \widehat{E(S)}$.
Paterson’s universal groupoid

- Let $\widehat{E(S)} \subseteq \{0, 1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi: E(S) \to \{0, 1\}$.
- S acts on $\widehat{E(S)}$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.
- The universal groupoid $G(S)$ is $S \ltimes \widehat{E(S)}$.
- $G(S)$ is Hausdorff iff the intersection of finitely generated lower sets of S are finitely generated.
Paterson’s universal groupoid

- Let $\widehat{E(S)} \subseteq \{0, 1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi: E(S) \to \{0, 1\}$.
- S acts on $\widehat{E(S)}$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.
- The universal groupoid $G(S)$ is $S \ltimes \widehat{E(S)}$.
- $G(S)$ is Hausdorff iff the intersection of finitely generated lower sets of S are finitely generated.
- In this case we call S Hausdorff.
Paterson’s universal groupoid

- Let $\hat{E}(S) \subseteq \{0, 1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi : E(S) \to \{0, 1\}$.
- S acts on $\hat{E}(S)$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.
- The universal groupoid $G(S)$ is $S \rtimes \hat{E}(S)$.
- $G(S)$ is Hausdorff iff the intersection of finitely generated lower sets of S are finitely generated.
- In this case we call S Hausdorff.

Theorem (BS)

For any commutative ring k with unit, $kS \cong kG(S)$.
Paterson’s universal groupoid

- Let $\widehat{E(S)} \subseteq \{0, 1\}^{E(S)}$ be the space of non-zero homomorphisms (characters) $\chi : E(S) \rightarrow \{0, 1\}$.
- S acts on $\widehat{E(S)}$ by $s \cdot \chi(e) = \chi(s^*es)$.
- The domain of s consists of those characters with $s \cdot \chi \neq 0$.
- The universal groupoid $\mathcal{G}(S)$ is $S \rtimes \widehat{E(S)}$.
- $\mathcal{G}(S)$ is Hausdorff iff the intersection of finitely generated lower sets of S are finitely generated.
- In this case we call S Hausdorff.

Theorem (BS)

*For any commutative ring \mathbb{k} with unit, $\mathbb{k}S \cong \mathbb{k}\mathcal{G}(S)$.***

- This generalizes Paterson’s result for C^*-algebras and my result for finite inverse semigroups.
Tight characters

- Let S be an inverse semigroup with 0.
Tight characters

- Let S be an inverse semigroup with 0.
- Idempotents $e_1, \ldots, e_n \leq e$ cover e if
 \[f \leq e \text{ and } fe_i = 0 \text{ for all } i \implies f = 0. \]
Tight characters

- Let S be an inverse semigroup with 0.
- Idempotents $e_1, \ldots, e_n \leq e$ cover e if
 \[f \leq e \text{ and } fe_i = 0 \text{ for all } i \implies f = 0. \]
- A character $\chi : E(S) \to \{0, 1\}$ is tight if $\chi(0) = 0$ and if e_1, \ldots, e_n cover e implies
 \[\chi(e) = \max_{i=1}^{n} \{\chi(e_i)\}. \]
Tight characters

• Let S be an inverse semigroup with 0.
• Idempotents $e_1, \ldots, e_n \leq e$ cover e if

$$f \leq e \text{ and } fe_i = 0 \text{ for all } i \implies f = 0.$$

• A character $\chi: E(S) \to \{0, 1\}$ is tight if $\chi(0) = 0$ and if e_1, \ldots, e_n cover e implies

$$\chi(e) = \max_{i=1}^n \{\chi(e_i)\}.$$

• Tight characters were introduced by R. Exel.
Tight characters

- Let S be an inverse semigroup with 0.
- Idempotents $e_1, \ldots, e_n \leq e$ cover e if
 \[f \leq e \text{ and } fe_i = 0 \text{ for all } i \implies f = 0. \]
- A character $\chi: E(S) \to \{0, 1\}$ is tight if $\chi(0) = 0$ and if e_1, \ldots, e_n cover e implies
 \[\chi(e) = \max_{i=1}^n \{\chi(e_i)\}. \]
- Tight characters were introduced by R. Exel.
- χ is tight iff $\chi^{-1}(1)$ is a limit of ultrafilters.
Polycyclic monoids

- If X is a set, the polycyclic monoid P_X is the inverse monoid with generators X and relations $x^*x = 1$, $x^*y = 0$ for $x, y \in X$ and $x \neq y$.
Polycyclic monoids

- If X is a set, the **polycyclic monoid** P_X is the inverse monoid with generators X and relations $x^*x = 1$, $x^*y = 0$ for $x, y \in X$ and $x \neq y$.

- If $X = \{x_1, \ldots, x_n\}$, then $x_1x_1^*, \ldots, x_nx_n^*$ are idempotents and form a cover of 1.
Polycyclic monoids

- If X is a set, the polycyclic monoid P_X is the inverse monoid with generators X and relations $x^*x = 1$, $x^*y = 0$ for $x, y \in X$ and $x \neq y$.
- If $X = \{x_1, \ldots, x_n\}$, then $x_1x_1^*, \ldots, x_nx_n^*$ are idempotents and form a cover of 1.
- A character χ on $E(P_X)$ is tight iff it satisfies the ‘Cuntz relation’

$$\sum_{i=1}^{n} \chi(x_i x_i^*) = 1.$$
Polycyclic monoids

• If X is a set, the **polycyclic monoid** P_X is the inverse monoid with generators X and relations $x^*x = 1$, $x^*y = 0$ for $x, y \in X$ and $x \neq y$.

• If $X = \{x_1, \ldots, x_n\}$, then $x_1x_1^*, \ldots, x_nx_n^*$ are idempotents and form a cover of 1.

• A character χ on $E(P_X)$ is tight iff it satisfies the ‘Cuntz relation’

$$\sum_{i=1}^{n} \chi(x_ix_i^*) = 1.$$

• If X is infinite, then no idempotent admits a non-trivial finite cover and so all characters are tight.
Polycyclic monoids

- If X is a set, the polycyclic monoid P_X is the inverse monoid with generators X and relations $x^*x = 1$, $x^*y = 0$ for $x, y \in X$ and $x \neq y$.
- If $X = \{x_1, \ldots, x_n\}$, then $x_1x_1^*, \ldots, x_nx_n^*$ are idempotents and form a cover of 1.
- A character χ on $E(P_X)$ is tight iff it satisfies the ‘Cuntz relation’
 \[\sum_{i=1}^{n} \chi(x_ix_i^*) = 1. \]
- If X is infinite, then no idempotent admits a non-trivial finite cover and so all characters are tight.
- P_X is Hausdorff.
Tight algebras

- The space $\hat{E}(S)_T$ of tight characters is closed and S-invariant.
Tight algebras

- The space $\hat{E}(S)_T$ of tight characters is closed and S-invariant.
- $\mathcal{G}(S)_T = S \ltimes \hat{E}(S)_T$ is the tight groupoid of S.
Tight algebras

- The space $\widehat{E(S)}_T$ of tight characters is closed and S-invariant.
- $\mathcal{G}(S)_T = S \rtimes \widehat{E(S)}_T$ is the tight groupoid of S.
- Recall that the idempotents of a commutative ring form a generalized boolean algebra where $e \lor f = e + f - ef$.

Theorem (BS, unpublished)
Let S be a Hausdorff inverse semigroup. Then $k \mathcal{G}(S)_T$ is isomorphic to $k S/I$ where I is the ideal generated by elements of the form $e - (e_1 \lor \cdots \lor e_n)$ such that e_1, \ldots, e_n cover e.

$\mathcal{G}(P_X)_T$ is the Leavitt path algebra analogue of O_X.

More generally, Leavitt path algebras are the tight algebras of graph inverse semigroups.
Tight algebras

- The space \(\hat{E}(S)_T \) of tight characters is closed and \(S \)-invariant.
- \(\mathcal{G}(S)_T = S \times \hat{E}(S)_T \) is the tight groupoid of \(S \).
- Recall that the idempotents of a commutative ring form a generalized boolean algebra where \(e \lor f = e + f - ef \).

Theorem (BS, unpublished)

Let \(S \) be a Hausdorff inverse semigroup. Then \(k\mathcal{G}(S)_T \) is isomorphic to \(kS/I \) where \(I \) is the ideal generated by elements of the form \(e - (e_1 \lor \cdots \lor e_n) \) such that \(e_1, \ldots, e_n \) cover \(e \).
Tight algebras

• The space $\widehat{E(S)}_T$ of tight characters is closed and S-invariant.

• $\mathcal{G}(S)_T = S \times \widehat{E(S)}_T$ is the tight groupoid of S.

• Recall that the idempotents of a commutative ring form a generalized boolean algebra where $e \lor f = e + f - ef$.

Theorem (BS, unpublished)

Let S be a Hausdorff inverse semigroup. Then $\mathbb{k}\mathcal{G}(S)_T$ is isomorphic to $\mathbb{k}S/I$ where I is the ideal generated by elements of the form $e - (e_1 \lor \cdots \lor e_n)$ such that e_1, \ldots, e_n cover e.

• $\mathbb{k}\mathcal{G}(P_X)_T$ is the Leavitt path algebra analogue of \mathcal{O}_X.
Tight algebras

- The space $\hat{E}(S)_T$ of tight characters is closed and S-invariant.
- $\mathcal{G}(S)_T = S \times \hat{E}(S)_T$ is the tight groupoid of S.
- Recall that the idempotents of a commutative ring form a generalized boolean algebra where $e \lor f = e + f - ef$.

Theorem (BS, unpublished)

Let S be a Hausdorff inverse semigroup. Then $k\mathcal{G}(S)_T$ is isomorphic to kS/I where I is the ideal generated by elements of the form $e - (e_1 \lor \cdots \lor e_n)$ such that e_1, \ldots, e_n cover e.

- $k\mathcal{G}(P_X)_T$ is the Leavitt path algebra analogue of O_X.
- More generally, Leavitt path algebras are the tight algebras of graph inverse semigroups.
Simple inverse semigroup algebras

- Let \mathbb{k} be a field and S an inverse semigroup.
Simple inverse semigroup algebras

- Let \(k \) be a field and \(S \) an inverse semigroup.
- There is the augmentation \(kS \to k \) so \(kS \) is not simple.
Simple inverse semigroup algebras

- Let \(k \) be a field and \(S \) an inverse semigroup.
- There is the augmentation \(kS \to k \) so \(kS \) is not simple.
- Assume \(S \) has a zero.
Simple inverse semigroup algebras

• Let \mathbb{k} be a field and S an inverse semigroup.
• There is the augmentation $\mathbb{k}S \to \mathbb{k}$ so $\mathbb{k}S$ is not simple.
• Assume S has a zero.
• Redefine $\mathbb{k}S$ to identify the zero of S and \mathbb{k}.
Simple inverse semigroup algebras

- Let \(k \) be a field and \(S \) an inverse semigroup.
- There is the augmentation \(kS \to k \) so \(kS \) is not simple.
- Assume \(S \) has a zero.
- Redefine \(kS \) to identify the zero of \(S \) and \(k \).
- Now \(kS \) can be simple!
Simple inverse semigroup algebras

- Let \mathbb{k} be a field and S an inverse semigroup.
- There is the augmentation $\mathbb{k}S \rightarrow \mathbb{k}$ so $\mathbb{k}S$ is not simple.
- Assume S has a zero.
- Redefine $\mathbb{k}S$ to identify the zero of S and \mathbb{k}.
- Now $\mathbb{k}S$ can be simple!
- If S has a non-trivial homomorphic image, $\mathbb{k}S$ is not simple.
Simple inverse semigroup algebras

- Let \(k \) be a field and \(S \) an inverse semigroup.
- There is the augmentation \(kS \to k \) so \(kS \) is not simple.
- Assume \(S \) has a zero.
- Redefine \(kS \) to identify the zero of \(S \) and \(k \).
- Now \(kS \) can be simple!
- If \(S \) has a non-trivial homomorphimic image, \(kS \) is not simple.
- A semigroup with no non-trivial homomorphimic images is called congruence-free.
Simple inverse semigroup algebras II

- W. D. Munn asked to characterize congruence-free inverse semigroups with simple algebras.
W. D. Munn asked to characterize congruence-free inverse semigroups with simple algebras.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then kS is simple iff no idempotent admits a non-trivial finite cover.
Simple inverse semigroup algebras II

- W. D. Munn asked to characterize congruence-free inverse semigroups with simple algebras.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then kS is simple iff no idempotent admits a non-trivial finite cover.

- It is natural to ask when the tight algebra is simple.
Simple inverse semigroup algebras II

• W. D. Munn asked to characterize congruence-free inverse semigroups with simple algebras.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then kS is simple iff no idempotent admits a non-trivial finite cover.

• It is natural to ask when the tight algebra is simple.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then $kG(S)_T$ is simple.
Simple inverse semigroup algebras II

• W. D. Munn asked to characterize congruence-free inverse semigroups with simple algebras.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then $\mathbb{k}S$ is simple iff no idempotent admits a non-trivial finite cover.

• It is natural to ask when the tight algebra is simple.

Theorem (BS, unpublished)

Let S be a congruence-free Hausdorff semigroup. Then $\mathbb{k}\mathcal{G}(S)_T$ is simple.

• The converse is false.
Effectiveness and minimality

• Let S be a Hausdorff inverse semigroup with zero.
Effectiveness and minimality

- Let S be a Hausdorff inverse semigroup with zero.
- S is 0-disjunctive if some non-zero element of S is killed by each proper homomorphism.
Effectiveness and minimality

- Let S be a Hausdorff inverse semigroup with zero.
- S is 0-disjunctive if some non-zero element of S is killed by each proper homomorphism.
- S is 0-simple if $SsS = S$ for all $s \neq 0$.
Effectiveness and minimality

- Let S be a Hausdorff inverse semigroup with zero.
- S is 0-disjunctive if some non-zero element of S is killed by each proper homomorphism.
- S is 0-simple if $SsS = S$ for all $s \neq 0$.
- S is congruence-free iff it is both 0-disjunctive and 0-simple.
Effectiveness and minimality

- Let S be a Hausdorff inverse semigroup with zero.
- S is 0-disjunctive if some non-zero element of S is killed by each proper homomorphism.
- S is 0-simple if $SsS = S$ for all $s \neq 0$.
- S is congruence-free iff it is both 0-disjunctive and 0-simple.

Theorem (BS, unpublished)

1. $\mathcal{G}(S)_T$ is effective if S is 0-disjunctive.
Effectiveness and minimality

- Let S be a Hausdorff inverse semigroup with zero.
- S is 0-disjunctive if some non-zero element of S is killed by each proper homomorphism.
- S is 0-simple if $SsS = S$ for all $s \neq 0$.
- S is congruence-free iff it is both 0-disjunctive and 0-simple.

Theorem (BS, unpublished)

1. $G(S)_T$ is effective if S is 0-disjunctive.
2. $G(S)_T$ is minimal if S is 0-simple.
Leavitt path algebras

• Let G be a directed graph and k a field.
Leavitt path algebras

- Let G be a directed graph and \mathbb{k} a field.
- The Leavitt path algebra $L_\mathbb{k}(G)$ is the \mathbb{k}-algebra with the same presentation as the graph C^*-algebra of G.
Leavitt path algebras

- Let G be a directed graph and \mathbb{k} a field.
- The Leavitt path algebra $L_\mathbb{k}(G)$ is the \mathbb{k}-algebra with the same presentation as the graph C^*-algebra of G.
- There is a graph inverse semigroup P_G generalizing the polycyclic inverse monoid P_X.
Leavitt path algebras

- Let G be a directed graph and k a field.
- The Leavitt path algebra $L_k(G)$ is the k-algebra with the same presentation as the graph C^*-algebra of G.
- There is a graph inverse semigroup P_G generalizing the polycyclic inverse monoid P_X.
- A graph inverse semigroup is congruence-free iff G is strongly connected and all vertices have in-degree ≥ 2.
Leavitt path algebras

• Let G be a directed graph and \mathbb{k} a field.
• The Leavitt path algebra $L_\mathbb{k}(G)$ is the \mathbb{k}-algebra with the same presentation as the graph C^*-algebra of G.
• There is a graph inverse semigroup P_G generalizing the polycyclic inverse monoid P_X.
• A graph inverse semigroup is congruence-free iff G is strongly connected and all vertices have in-degree ≥ 2.
• We recover the result that G strongly connected with no vertex of in-degree 1 implies $L_\mathbb{k}(G)$ is simple.
Leavitt path algebras

- Let G be a directed graph and \mathbb{k} a field.
- The Leavitt path algebra $L_{\mathbb{k}}(G)$ is the \mathbb{k}-algebra with the same presentation as the graph C^*-algebra of G.
- There is a graph inverse semigroup P_G generalizing the polycyclic inverse monoid P_X.
- A graph inverse semigroup is congruence-free iff G is strongly connected and all vertices have in-degree ≥ 2.
- We recover the result that G strongly connected with no vertex of in-degree 1 implies $L_{\mathbb{k}}(G)$ is simple.
- We also recover semiprimitivity of $L_{\mathbb{k}}(G)$ over a semiprimitive base ring in the case that no vertex has in-degree 1.
Future work

- Characterize primitive and semiprimitive groupoid algebras.
Future work

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
Future work

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Understand the Jacobson radical of a groupoid algebra.
Future work

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Understand the Jacobson radical of a groupoid algebra.
- Obtain as much as possible of the theory of Leavitt algebras via groupoids.
- Use groupoid algebras to understand cross products.
- Characterize when the tight algebra of an inverse semigroup is simple in semigroup theoretic terms.
- Deal with the non-Hausdorff case.
Future work

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Understand the Jacobson radical of a groupoid algebra.
- Obtain as much as possible of the theory of Leavitt algebras via groupoids.
- Use groupoid algebras to understand cross products.
Future work

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Understand the Jacobson radical of a groupoid algebra.
- Obtain as much as possible of the theory of Leavitt algebras via groupoids.
- Use groupoid algebras to understand cross products.
- Characterize when the tight algebra of an inverse semigroup is simple in semigroup theoretic terms.

Deal with the non-Hausdorff case.
Future work

- Characterize primitive and semiprimitive groupoid algebras.
- Classify all simple modules for groupoid algebras over a field.
- Understand the Jacobson radical of a groupoid algebra.
- Obtain as much as possible of the theory of Leavitt algebras via groupoids.
- Use groupoid algebras to understand cross products.
- Characterize when the tight algebra of an inverse semigroup is simple in semigroup theoretic terms.
- Deal with the non-Hausdorff case.
Thank you for your attention!

Obrigado pela sua atenção