A Bound for the Order of Derivatives in the Rosenfeld-Gröbner Algorithm

Oleg Golubitsky
oleg.golubitsky@gmail.com

NSERC Postdoctoral Fellow
Queen’s University
Kingston, Ontario

In collaboration with
Marc Moreno Maza, Marina V. Kondratieva, and Alexey Ovchinnikov
Outline

• Introduction:
 • Jacobi bound for ODE systems
 • Ritt’s proof of the Jacobi bound for linear systems
 • Motivation for our bound on the order of derivatives
Outline

• Introduction:
 • Jacobi bound for ODE systems
 • Ritt’s proof of the Jacobi bound for linear systems
 • Motivation for our bound on the order of derivatives
• Bound for the special case of 2 variables
Outline

- **Introduction:**
 - Jacobi bound for ODE systems
 - Ritt’s proof of the Jacobi bound for linear systems
 - Motivation for our bound on the order of derivatives
- **Bound for the special case of 2 variables**
- **General case:** n variables
 - What if the set of leading variables is fixed?
 - How can the set of leading variables change?
 - Weak d-triangular sets (E. Hubert’s modification of the Rosenfeld-Gröbner algorithm)
 - Algebraic reduction w.r.t. a weak d-triangular set preserving the bound
 - Final algorithm and proof of the bound
Notation

• \mathbb{K} is an ordinary differential field of characteristic zero with derivation $\delta : \mathbb{K} \to \mathbb{K}$:

$$\delta(a + b) = \delta(a) + \delta(b), \quad \delta(ab) = \delta(a)b + a\delta(b).$$

• $Y = \{y_1, \ldots, y_n\}$ is a set of differential indeterminates.

• $\delta^\infty Y = \{\delta^m y \mid y \in Y, \ m = 0, 1, 2, \ldots\}$ is the set of derivatives.

• $\mathbb{K}\{Y\} = \mathbb{K}[\delta^\infty Y]$ endowed with $\delta : \mathbb{K}\{Y\} \to \mathbb{K}\{Y\}$ is the differential ring of differential polynomials.
Jacobi bound for linear systems

- Given a system of n linear differential polynomials

$$L_1, \ldots, L_n \in \mathbb{K}\{Y\}$$

which for every $y \in Y$ implies an equation in y alone.

- Let $a_{ij} = \text{ord}_{y_j} L_i$, $1 \leq i, j \leq n$

 (here we assume that $\text{ord}_y f = -\infty$ if f does not involve any derivatives of y)

- For a permutation $\pi \in S_n$, let

$$d_\pi = a_{1\pi(1)} + \cdots + a_{n\pi(n)}$$

be called a diagonal sum.

- Let $h = \max_{\pi \in S_n} d_\pi$.
Jacobi bound for linear systems

Theorem [Ritt, 1935] There exists a triangular system of differential polynomials R_1, \ldots, R_n equivalent to L_1, \ldots, L_n and satisfying $\sum_{i=1}^{n} \text{ord}_{y_i} R_i \leq h$.

Proof...

- Show that there exists a finite diagonal sum.
- Consider elimination ranking $y_1 > \ldots > y_n$.
- If a_{i1} participates in a maximum diagonal sum, then reduction w.r.t. L_i, if it is possible, does not increase h.
Jacobi bound for linear systems

Theorem [Ritt, 1935] There exists a triangular system of differential polynomials R_1, \ldots, R_n equivalent to L_1, \ldots, L_n and satisfying
\[\sum_{i=1}^{n} \text{ord}_{y_i} R_i \leq h. \]

Proof...
If such reductions are not possible, this is because

- Only one L_i involves $y_1 \Rightarrow$ proceed similarly with the elimination of y_2, \ldots, y_{n-1}.
- There exists i such that a_{i1} is maximal among a_{11}, \ldots, a_{n1} and participates in a finite diagonal sum. Without loss of generality, assume that $i = n$.
Jacobi bound for linear systems

Theorem [Ritt, 1935] There exists a triangular system of differential polynomials R_1, \ldots, R_n equivalent to L_1, \ldots, L_n and satisfying $\sum_{i=1}^{n} \text{ord}_{y_i} R_i \leq h$.

Proof...

- Change the indices of L_1, \ldots, L_{n-1} and y_2, \ldots, y_n so that

$$a_{11} + \ldots + a_{n-1,n-1}$$

is maximal. This sum is finite.

- Then one can reduce L_n w.r.t. L_1 without increasing h.

\square
Notation

- Fix a ranking <: a total order on derivatives such that for all $u, v \in \delta^\infty Y$

 \[u < \delta u \] and \[u < v \Rightarrow \delta u < \delta v \].
Notation

• Fix a ranking \prec: a total order on derivatives such that for all $u, v \in \delta^\infty Y$

$$[u < \delta u] \text{ and } [u < v \Rightarrow \delta u < \delta v].$$

• For a polynomial f, let $u_f = \delta^k y_i$ be the derivative of the highest rank w.r.t. \leq occurring in f. Then

$$f = i_f u_f^d + g(u_f), \quad \deg g < d.$$
Notation

• Fix a ranking $<$: a total order on derivatives such that for all $u, v \in \delta^\infty Y$

$$[u < \delta u] \text{ and } [u < v \Rightarrow \delta u < \delta v].$$

• For a polynomial f, let $u_f = \delta^k y_i$ be the derivative of the highest rank w.r.t. \leq occurring in f. Then

$$f = i_f u_f^d + g(u_f), \text{ deg } g < d.$$

• $lv f = y_i$, $ld f = u_f$, $rk f = u_f^d$, $s_f = i_{\delta f}.$
Notation

• Fix a ranking \prec: a total order on derivatives such that for all $u, v \in \delta^\infty Y$

$$[u < \delta u] \text{ and } [u < v \Rightarrow \delta u < \delta v].$$

• For a polynomial f, let $u_f = \delta^k y_i$ be the derivative of the highest rank w.r.t. \leq occurring in f. Then

$$f = i_f u_f^d + g(u_f), \quad \deg g < d.$$

• lv $f = y_i$, ld $f = u_f$, rk $f = u_f^d$, sf $= i_\delta f$.

• Ranks u_1^d and u_2^d can be compared w.r.t. \prec:

$$u_1^d < u_2^d \iff [u_1 < u_2] \text{ or } [u_1 = u_2 \text{ and } d_1 < d_2].$$
Some basics of differential algebra

- Polynomial f is \textit{algebraically reduced} w.r.t. g, if $\deg_{u_g} f < \deg_{u_g} g$.

- f is \textit{partially reduced} w.r.t. g, if f is free of $\delta^k u_g$, $k > 0$.

- f is (fully) \textit{reduced} w.r.t. g, if f is algebraically and partially reduced w.r.t. g.

- Set A is \textit{autoreduced}, if every element of A is reduced w.r.t. every other element of A.

- For an autoreduced set A, let $\min A$ denote the polynomial in A of the least rank.

- For autoreduced sets A and B, $\text{rk} A < \text{rk} B$ iff

$$[\text{rk} B \subset \text{rk} A] \text{ or } [\min(\text{rk} A \setminus \text{rk} B) < \min(\text{rk} B \setminus \text{rk} A)].$$
Regular ideals

- For any finite polynomial sets A, H, ideal

$$[A] : H^\infty = \{f \mid \exists h \in H^\infty \, hf \in [A]\}$$

is differential.

- Ideal $[A] : H^\infty$ is called regular, if
 - A is autoreduced
 - $H \supset H_A = \{i_f, s_f \mid f \in A\}$
 - H is partially reduced w.r.t. A.

- Theorem. [Boulier et al, 1995] Regular ideals are radical.

- Rosnefeld’s Lemma. If differential ideal $[A] : H^\infty$ is regular and polynomial f is partially reduced w.r.t. A, then

$$f \in [A] : H^\infty \iff f \in (A) : H^\infty$$
Regular decomposition

- The Rosenfeld-Gröbner algorithm yields a regular decomposition of a radical differential ideal:

\[\{ F \} = \bigcap_{i=1}^{k} R_i, \quad R_i = [A_i] : H_i^\infty. \]

- There exist efficient algebraic methods (plus parallel and modular Monte-Carlo algorithms currently under development by M. Moreno Maza et al) for computing a regular decomposition of a radical ideal:

\[\sqrt{G} = \bigcap_{i=1}^{l} J_i, \quad J_i = (A_i) : H_i^\infty. \]
Motivation for our bound

• Given a system of differential polynomials F, find a number d, so that every algebraic regular decomposition of the radical algebraic ideal

$$\sqrt{F(d)}, \quad F(d) = \{ f^{(i)} \mid f \in F, \ 0 \leq i \leq d \}$$

“yields” a regular decomposition of $\{F\}$.

• First step: estimate the order of differential polynomials in a regular decomposition

$$\{ F \} = \bigcap_{i=1}^{k} [A_i] : H_i^\infty.$$
Rosenfeld-Gröbner algorithm

Algorithm Rosenfeld-Gröbner(F_0)

Input: A finite set of differential polynomials F_0

Output: A finite set T of regular systems such that $\{F_0\} = \bigcap_{(A,H)\in T} [A] : H^\infty$

$T := \emptyset$

$U := \{(F_0, \emptyset)\}$

while $U \neq \emptyset$ do

Take and remove any $(F, H) \in U$

Let C be an autoreduced subset of F of the least rank

$R := d\text{-rem}(F \setminus C, C) \setminus \{0\}$

if $R = \emptyset$ then

if $1 \notin (C) : (d\text{-rem}(H, C) \cup H_C)^\infty$ then $T := T \cup \{(C, d\text{-rem}(H, C) \cup H_C)\}$

else

$U := U \cup \{(C \cup R, H \cup H_C)\}$

end if

$U := U \cup \{(F \cup \{h\}, H) \mid h \in H_C, h \in \mathbb{K}\}$

end if

end while

return T
Special case: $n = 2$

- Let $F \subset \mathbb{K}\{y, z\}$.
- Let $m_y(F)$ and $m_z(F)$ be the maximal orders of derivatives of y and z occurring in F.
- Let $M(F) = m_y(F) + m_z(F)$.

Lemma. For all $(F, H) \in U$ in the Rosenfeld-Gröbner algorithm,

$$M(F) \leq M(F_0).$$

Proof...
Show that $M(F)$ cannot increase in the Rosenfeld-Gröbner algorithm:

- Let $(F, H) \in U$.
- Let C be an autoreduced subset of F of the least rank.
Special case: \(n = 2 \)

- Let \(F \subset \mathbb{K}\{y, z\} \).
- Let \(m_y(F) \) and \(m_z(F) \) be the the maximal orders of derivatives of \(y \) and \(z \) occurring in \(F \).
- Let \(M(F) = m_y(F) + m_z(F) \).

Lemma. For all \((F, H) \in U \) in the Rosenfeld-Gröbner algorithm,

\[
M(F) \leq M(F_0).
\]

Proof...

- \(|C'| \leq 2 \).
- Let \(R = \text{d-rem}(F \setminus C, C) \).
Special case: $n = 2$

- Let $F \subset \mathbb{K}\{y, z\}$.

- Let $m_y(F)$ and $m_z(F)$ be the maximal orders of derivatives of y and z occurring in F.

- Let $M(F) = m_y(F) + m_z(F)$.

Lemma. For all $(F, H) \in U$ in the Rosenfeld-Gröbner algorithm,

$$M(F) \leq M(F_0).$$

Proof...

- Let $|C| = 1$. Without loss of generality, $\text{ld } C = \{y^{(d_y)}\}$.

- $m_y(C \cup R) = d_y$, $m_z(C \cup R) \leq m_z(F) + (m_y(F) - d_y)$.

- Therefore $M(C \cup R) \leq M(F)$.
Special case: \(n = 2 \)

- Let \(F \subset \mathbb{K}\{y, z\} \).
- Let \(m_y(F) \) and \(m_z(F) \) be the the maximal orders of derivatives of \(y \) and \(z \) occurring in \(F \).
- Let \(M(F) = m_y(F) + m_z(F) \).

Lemma. For all \((F, H) \in U\) in the Rosenfeld-Gröbner algorithm,

\[
M(F) \leq M(F_0).
\]

Proof...

- Let \(|C| = 2\). Then \(\text{ld } C = \{y^{(d_y)}, z^{(d_z)}\} \) and

\[
M(C \cup R) = d_y + d_z \leq M(F).
\]
Special case: \(n = 2 \)

- Let \(F \subset \mathbb{K}\{y, z\} \).
- Let \(m_y(F) \) and \(m_z(F) \) be the maximal orders of derivatives of \(y \) and \(z \) occurring in \(F \).
- Let \(M(F) = m_y(F) + m_z(F) \).

Lemma. For all \((F, H) \in U\) in the Rosenfeld-Gröbner algorithm,

\[M(F) \leq M(F_0). \]

Proof...

- Finally, if \(G \subset F \cup H_F \), then \(M(G) \leq M(F) \).

\(\square \)
General case; fixed leading variables

- Let $F \subset \mathbb{K}\{y_1, \ldots, y_n\}$.
- Let C be an autoreduced subset of F of the least rank with
 \[\text{ld } C = \{y_1^{(d_1)}, \ldots, y_k^{(d_k)}\}. \]
- Then

\[
m_i(C \cup R) \leq \begin{cases}
 d_i, & i = 1, \ldots, k \\
 m_i(F) + \max_{1 \leq j \leq k} (m_j(F) - d_j), & i = k + 1, \ldots, n
\end{cases}
\]
General case; fixed leading variables

Define

\[M_{1v}C(F') = M_{y_1,...,y_k}(F') = (n - k) \sum_{i=1}^{k} m_i(F') + \sum_{i=k+1}^{n} m_i(F') \quad (1 \leq |C| < n). \]

Then inequality

\[m_i(C \cup R) \leq \left\{ \begin{array}{ll} d_i, & i = 1,\ldots,k \\ m_i(F') + \max_{1 \leq j \leq k} (m_j(F') - d_j), & i = k+1,\ldots,n \end{array} \right. \]

implies:

\[M_{1v}C(C \cup R) = M_{y_1,...,y_k}(C \cup R) = \]

\[(n - k) \sum_{i=1}^{k} m_i(C \cup R) + \sum_{i=k+1}^{n} m_i(C \cup R) \leq \]

\[(n - k) \sum_{i=1}^{k} d_i + \sum_{i=k+1}^{n} m_i(F') + (n - k) \max_{1 \leq j \leq k} (m_j(F') - d_j) \leq \]

\[(n - k) \sum_{i=1}^{k} m_i(F') + \sum_{i=k+1}^{n} m_i(F') - \]

\[-(n - k) \sum_{i=1}^{k} (m_i(F') - d_i) + (n - k) \max_{1 \leq j \leq k} (m_j(F') - d_j) \leq M_{1v}C(F'). \]
Changing leading variables

• A non-leading variable y_{k+1} becomes leading:

$$M_{y_1, \ldots, y_{k+1}}(F) = (n - k - 1) \sum_{i=1}^{k+1} m_i(F) + \sum_{i=k+2}^{n} m_i(F) \leq M_{y_1, \ldots, y_k}(F) + (n - k - 2)m_{k+1}(F) \leq (n - k - 1)M_{y_1, \ldots, y_k}(F).$$

• A leading variable becomes non-leading: make sure this does not happen!
Leading variables become non-leading

Example 1:

- $F = \{x, x^2 + z, y^2 + z\}, \ x > y > z$
- $C = \{x, y^2 + z\}, \ lv\ C = \{x, y\}$
- $R = d\text{-rem}(F \setminus C, C) = \{z\}$
- $F_1 = C \cup R = \{x, y^2 + z, z\}$
- $C_1 = \{x, z\}, \ lv\ C_1 = \{x, z\}$
- $y \in lv\ C$ but $y \notin lv\ C_1$
- y disappeared from leading variables only temporarily: reduce $y^2 + z$ w.r.t. z, and y becomes a leading variable again.
- \Rightarrow one can try to replace autoreduced sets by weak d-triangular sets in the Rosenfeld-Gröbner algorithm
Leading variables become non-leading

Example 2:

- $F = \{x, x^2 + z, zy^2\}$, $x > y > z$
- $C = \{x, zy^2\}$, $\text{lv } C = \{x, y\}$
- $R = \text{d-rem}(F \setminus C, C) = \{z\}$
- $F_1 = C \cup R = \{x, zy^2, z\}$
- $C_1 = \{x, z\}$, $\text{lv } C_1 = \{x, z\}$
- y disappeared from leading variables permanently:
 \[zy^2 \rightarrow z 0. \]

- **Observation:** In the component (F_1, H_1), where $H_1 = H \cup H_C$, we have $z \in F_1 \cap H_1$, hence
 \[\{F_1\} : H_1^\infty = (1). \]
Differentially triangular sets

- A set of polynomials A is a weak differentially triangular set, if $\text{ld } A$ is autoreduced.
- A weak differentially triangular set A is differentially triangular, if every element of A is partially reduced w.r.t. the other elements of A.
- One can expand the definition of regular ideals [Hubert]: Ideal $[A] : H^\infty$ is called regular, if
 - A is differentially triangular
 - $H \supset s_A$
 - H is partially reduced w.r.t. A.
Modified Rosenfeld-Gröbner algorithm

Algorithm Rosenfeld-Gröbner(F_0) (based on [Hubert, 2001])

Input: A finite set of differential polynomials F_0

Output: A finite set T of regular systems such that $\{F_0\} = \bigcap_{(A,H) \in T} [A : H^\infty}$

1. $T := \emptyset$
2. $U := \{(F_0 \setminus \{\min F_0\}, \{\min F_0\}, \emptyset)\}$
3. while $U \neq \emptyset$ do
 4. Take and remove any $(F, C, H) \in U$
 5. $R := \operatorname{d-rem}(F, C) \setminus \{0\}$
 6. if $R = \emptyset$ then $T := T \cup \operatorname{Autoreduce&Check}(C, H \cup H_C)$
 7. else $C^\succ := \{p \in C \mid \operatorname{lv} p = \operatorname{lv}(\min R)\}$
 8. $\bar{C} := C \setminus C^\succ \cup \{\min R\} \quad \# \text{ Note: } \bar{C} \text{ is a weak d-triangular set s.t.}$
 9. $\bar{F} := C^\succ \cup R \setminus \{\min R\} \quad \# \quad \operatorname{rk} \bar{C} < \operatorname{rk} C \text{ and } \operatorname{lv} C \subseteq \operatorname{lv} \bar{C}$
 10. $\bar{H} := \operatorname{d-rem}(H \cup H_{\bar{C}}, \bar{C})$
 11. if $0 \notin \bar{H}$ then $U := U \cup \{(\bar{F}, \bar{C}, \bar{H})\}$
 12. end if
 13. $U := U \cup \{(F \cup \{h\}, C, H) \mid h \in H_C, \ h \notin \mathbb{K}\}$
14. end while
15. return T
Reduction w.r.t. a weak d-Δ set

Algorithm Rosenfeld-Gröbner(F_0)

Input: A finite set of differential polynomials F_0

Output: A finite set T of regular systems such that $\{F_0\} = \bigcap_{(A,H) \in T} [A] : H^\infty$

... while $U \neq \emptyset$ do
 Take and remove any $(F,C,H) \in U$
 Let $m_i = \max \{\text{ord}_{y_i} f \mid f \in F \cup C\}, i = 1, \ldots, n$
 $B := \text{Differentiate&Autoreduce}(C, \{m_i\}_{i=1}^n)$
 if $B \neq \emptyset$ then
 $R := \text{alg-rem}(F, B) \setminus \{0\}$
 if $R = \emptyset$ then $T := T \cup \text{Autoreduce&Check}(C,H \cup H_C)$
 else
 ...
 end if
 end if
 $U := U \cup \{(F \cup \{h\}, C, H) \mid h \in H_C, h \notin \mathbb{K}\}$
end while
return T
Algorithm Differentiate&Autoreduce

Algorithm Differentiate&Autoreduce($C, \{m_i\}$)

Input: a weak d-triangular set $C = C_1, \ldots, C_k$ with $\text{ld } C = y_1^{(d_1)}, \ldots, y_k^{(d_k)}$, and a set of non-negative integers $\{m_i\}_{i=1}^n$, $m_i \geq m_i(C)$

Output: set $B = \{B_i^j \mid 1 \leq i \leq k, 0 \leq j \leq m_i - d_i\}$ satisfying

$B \subset [C], \text{ rk } B_i^0 = \text{rk } C_i, \text{ rk } B_i^j = y_i^{(d_i+j)} (j > 0)$

$i_{B_i^j} \in H^\infty_C + [C] (j \geq 0)$

B_i^j is partially reduced w.r.t. $C \setminus \{C_i\}$

$m_i(B) \leq m_i + \sum_{j=1}^k (m_j - d_j), i = k + 1, \ldots, n$

or \emptyset, if it is detected that $[C] : H^\infty_C = (1)$

for $i := 1$ to k

$B_i^0 := \text{alg-rem}(C_i, \{B_l^r \mid 1 \leq l < i, 0 < r \leq m_l - d_l\})$

if $\text{rk } B_i^0 \neq \text{rk } C_i$ then return \emptyset

for $j := 1$ to $m_i - d_i$

$B_i^j := \text{alg-rem}(\delta B_i^{j-1}, \delta(C \setminus \{C_i\}))$

if $\text{ld } B_i^j \neq y_i^{(d_i+j)}$ then return \emptyset

end for

end for

return B
Lemma. Let C be a weak d-triangular set, and let f be a polynomial such that $lv f \not\in lv C$ and $i_f \in H_C^\infty + [C]$. Let $f \rightarrow_C g$. Then

- $rk g \neq rk f \Rightarrow [C] : H_C^\infty = (1)$
- $rk g = rk f \Rightarrow i_g \in H_C^\infty + [C]$

- $B_1^0 = C_1$ is partially reduced w.r.t. C_2, \ldots, C_k.
- δB_1^0 is reduced w.r.t. $\delta^l C_i$, $l > 1$, $i = 2, \ldots, k$
- $rk \delta B_1^0 = y_1^{(d_1+1)}$
- $B_1^1 = alg-rem(\delta B_1^0, \delta(C \setminus \{C\})$
- Lemma $\Rightarrow [C] : H_C^\infty = (1)$ or

$$rk B_1^1 = y_1^{(d_1+1)} \text{ and } i_{B_1^1} \in H_C^\infty + [C].$$
Lemma. Let C be a weak d-triangular set, and let f be a polynomial such that $\text{lv } f \not\in \text{lv } C$ and $i_f \in H_C^\infty + [C]$. Let $f \rightarrow_C g$. Then

- $\text{rk } g \neq \text{rk } f \Rightarrow [C] : H_C^\infty = (1)$
- $\text{rk } g = \text{rk } f \Rightarrow i_g \in H_C^\infty + [C]

- B_1^1 is partially reduced w.r.t. C_2, \ldots, C_k.
- \Rightarrow similarly for all B_1^r, $1 < r < m_1 - d_1$.
- For $B_1 = B_1^0, \ldots, B_1^{m_1-d_1}$, we have:

$$B_1 \subset [C], \quad H_{B_1} \subset H_C^\infty + [C]$$
Lemma. Let C be a weak d-triangular set, and let f be a polynomial such that $\text{lv} f \notin \text{lv} C$ and $i_f \in H_C^\infty + [C]$. Let $f \rightarrow_C g$. Then

- $\text{rk } g \neq \text{rk } f \Rightarrow [C] : H_C^\infty = (1)$
- $\text{rk } g = \text{rk } f \Rightarrow i_g \in H_C^\infty + [C]$

- $B_2^0 = \text{alg-rem}(C_2, \{B_1^0, \ldots, B_1^{m_1-d_1}\})$

- C_2 is partially reduced w.r.t. C_3, \ldots, C_k and $y_1^{(d_1+l)}$, $l > m_1 - d_1$.

- By Lemma, two cases are possible:
 - $\text{rk } B_2^0 = \text{rk } C_2$, $i_{B_2^0} \in H_B^\infty + [B] \subset H_C^\infty + [C]$
 - $[B] : H_B^\infty = (1) \Rightarrow [C] : H_C^\infty = (1)$

- Similarly for $B_2^1, \ldots, B_2^{m_2-d_2}$ and B_i^r, $i > 2$.
Inequality

\[m_i(B) \leq m_i + \sum_{j=1}^{k} (m_j - d_j), \quad i = k + 1, \ldots, n \]

follows from the fact that the two nested loops

\begin{verbatim}
for i := 1 to k do
 ...
 for j := 1 to m_i - d_i do
 ...
end for
end for
\end{verbatim}

have \(\sum_{j=1}^{k} (m_j - d_j) \) iterations, and at each iteration each polynomial is differentiated at most once.
Algorithm Rosenfeld-Gröbner(F_0)

Output: $\{F_0\} = \bigcap_{(A,H) \in T}[A] : H^\infty$ satisfying $M(A) \leq (n-1)!M(F_0)$, $(A,H) \in T$

$T := \emptyset$, $U := \{(F_0 \setminus \{\min F_0\}, \{\min F_0\}, \emptyset)\}$

while $U \neq \emptyset$ do

Take and remove any $(F, C, H) \in U$

Let $m_i = \max\{\operatorname{ord}_{y_i} f \mid f \in F \cup C\}$, $i = 1, \ldots, n$

$B := \text{Differentiate} \& \text{Autoreduce}(C, \{m_i\}_{i=1}^n)$

if $B \neq \emptyset$ then

$R := \text{alg-rem}(F, B) \setminus \{0\}$

if $R = \emptyset$ then $T := T \cup \text{Autoreduce} \& \text{Check}(C, H \cup H_C)$

else $C^> := \{p \in C \mid \operatorname{lv} p = \operatorname{lv}(\min R)\}$

$\bar{C} := C \setminus C^> \cup \{\min R\}$

$\bar{F} := C^> \cup R \setminus \{\min R\}$

$\bar{H} := \text{d-rem}(H \cup H_{C^>}, \bar{C})$

if $0 \notin \bar{H}$ then $U := U \cup \{(\bar{F}, \bar{C}, \bar{H})\}$

end if

$U := U \cup \{(F \cup \{h\}, C, H) \mid h \in H_C, h \notin \mathbb{K}\}$

end if

end while

return T
Final proof of the bound

- $m_i(B) \leq m_i + \sum_{j=1}^{k} (m_j - d_j), \; k < i \leq n$

- $m_i(R) \leq \begin{cases} d_i, & 1 \leq i \leq k \\ m_i(B), & k < i \leq n \end{cases}$

- $M_{1v} C(R) \leq (n - k) \sum_{i=1}^{k} d_i + \sum_{i=k+1}^{n} m_i + \sum_{i=k+1}^{n} (m_i - d_i) \leq M_{1v} C(F \cup C)$

- Two cases are possible:
 - $|C| < n$: Again two cases:
 - $|\bar{C}| < n$:
 - $|\bar{C}| = n$: $M(\bar{F} \cup \bar{C}) = M_{1v} C(\bar{F} \cup \bar{C}) \leq M(F \cup C)$.
 - $|C| = n$. Then also $|\bar{C}| = n$ and $M(\bar{F} \cup \bar{C}) \leq \sum_{i=1}^{n} d_i \leq M(F \cup C)$.
 - Therefore $M(A) \leq (n - 1)!M(F_0)$.

The Kolchin Seminar in Differential Algebra. March 18, 2006 – page 25/26
References

