Height Functions

Michael Tepper

February 10, 2006

Definition 1. An \textit{archimedean} absolute value on a field \(k \) is a real valued
function
\[
\| \cdot \| : k \to [0, \infty)
\]
with the following three properties:
\begin{enumerate}
\item \(\|x\| = 0 \) if and only if \(x = 0 \).
\item \(\|xy\| = \|x\| \cdot \|y\| \).
\item \(\|x + y\| \leq \|x\| + \|y\| \).
\end{enumerate}
A \textit{nonarchimedean} absolute value satisfies the extra condition that
\begin{enumerate}
\item[(3')] \(\|x + y\| \leq \max\{\|x\|, \|y\|\} \).
\end{enumerate}

If \(k \) is a field, we denote \(M_k \) the set of absolute values on \(k \). As an abuse of
notation we say that if \(|\cdot|_v \) is an absolute value on \(k \) then \(v \in M_k \) rather then
\(|\cdot|_v \in M_k \).

The rational numbers \(\mathbb{Q} \) have the archimedean absolute value
\[
|x|_\infty = \max\{x, -x\}.
\]
For each prime number \(p \in \mathbb{Z} \) there is a nonarchimedean absolute value (usually
called the \(p \)-adic absolute value)
\[
|x|_p = p^{-\text{ord}_p(x)}.
\]
Where \(\text{ord}_p(x) \) is the unique integer such that \(x \) can be written in the form
\[
x = p^{\text{ord}_p(x)} \cdot a/b \quad \text{with} \quad a, b \in \mathbb{Z} \quad \text{and} \quad p \nmid ab
\]

Note 1. It can be proved that up to a "power" that these are the only nontrivial
absolute values on \(\mathbb{Q} \). See [Lang - Number Theory] or [B-S Number Theory]

Theorem 2. (Power Rule 1)
\[
\prod_{v \in M_\mathbb{Q}} |x|_v = 1
\]
Proof. By the above note, there is only one archimedean absolute value, the absolute value we normally think of \(|x|_{\infty} = \max\{x, -x\} \). So

\[
\prod_{v \in \mathcal{M}_k} |x|_v = |x|_{\infty} \prod_{p \text{ prime}} |x|_p, \\
= |x|_{\infty} \prod_{p \text{ prime}} p^{-\operatorname{ord}_p(x)} \\
= |x|_{\infty} \cdot |x|^{-1}_{\infty} \\
= 1
\]

\[\square\]

Definition 3. A **number field** is finite extension of the rational numbers.

Definition 4. The **ring of integers** of a number field \(k \), denoted \(\mathcal{O}_k \), are the integral elements of \(k \). (The solutions to monic polynomials with coefficients in \(k \).)

A number field \(k \) has the archimedean absolute values for each embedding of \(k \) in \(\mathbb{C} \), \(\sigma : k \to \mathbb{C} \).

\[|x|_\sigma = |\sigma(x)|\]

Where \(|\sigma(x)| \) is the complex absolute value of \(\sigma(x) \). Since \(k \) has \(n \) distinct embeddings into \(\mathbb{C} \), \(k \) has \(n \) distinct archimedean absolute values where \(n = [k : \mathbb{Q}] \).

\(\mathcal{O}_k \) in \(k \) is the analog of \(\mathbb{Z} \) in \(\mathbb{Q} \) so we want something similar to the construction of nonarchimedean absolute values above with an absolute value for each prime. However, this situation is more complicated because \(\mathcal{O}_k \) is not necessarily a UFD. We use the fact that \(\mathcal{O}_k \) is a Dedekind domain and every fractional ideal has a unique primary factorization. [See A-M and Samuel]

With all of this we can construct a nonarchimedean absolute value for each prime ideal \(p \subseteq \mathcal{O}_k \). Let \(x \in \mathcal{O}_k \) then the fractional idea \(x\mathcal{O}_k \) has a unique primary factorization,

\[x\mathcal{O}_k = \prod p^{\operatorname{ord}_p(x)}\]

Using this we define the nonarchimedean absolute value

\[|x|_p = p^{-\operatorname{ord}_p(x)/\epsilon_p(p)}\]

where \(\epsilon_p(p) = \operatorname{ord}_p(p) \).

Note 2. The absolute values described above are the only absolute values on the number field \(k \) up to a "power."

Definition 5. The **normalized absolute value** associated to \(v \in \mathcal{M}_k \) is

\[\|x\|_v = |x|_v^{n_v} \]

where \(n_v = [k_v : \mathbb{Q}_v] \) and \(k_v \) is the completion of \(k \) with respect to the absolute value \(v \).
Theorem 6. (Power Rule 2)
\[\prod_{v \in M_k} \|x\|_v = 1 \]

Proof. I’m not going to prove it, but it follows from the power rule on \(\mathbb{Q} \) using a lemma in Lang’s Algebra book and applied in his Number Theory book. \(\square \)

Definition 7. Let \(k \) be a number field, and \(P = [x_0, \ldots, x_n] \in \mathbb{P}^n(k) \). The \textbf{(multiplicative) height} of \(P \) (relative to \(k \)) is
\[H_k(P) = \prod_{v \in M_k} \max\{\|x_0\|_v, \ldots, \|x_n\|_v\}. \]

The \textbf{logarithmic or additive height} is
\[h_k(P) = \log H_k(P) = \sum_{v \in M_k} \max\{\|x_0\|_v, \ldots, \|x_n\|_v\}. \]

Lemma 8. Let \(k \) be a number field and let \(P \in \mathbb{P}^n(k) \).

(a) The height \(H_k(P) \) is independent of the choice of homogeneous coordinates for \(P \).
(b) \(H_k(P) \geq 1 \) (and \(h_k(P) \geq 0 \)) for all \(P \in \mathbb{P}^n(k) \).
(c) Let \(k' \) be a finite extension of \(k \). Then
\[H_{k'}(P) = H_k(P)^{[k':k]}. \]

Proof. (a) Let \(P = [x_0, \ldots, x_n] \). Then any other choice of coordinates of \(P \) has the form \([cx_0, \ldots, cx_n]\) with \(c \in k^\times \). Then
\[H_k([cx_0, \ldots, cx_n]) = \prod_{v \in M_k} \max\{\|cx_0\|_v, \ldots, \|cx_n\|_v\} \]
\[= (\prod_{v \in M_k} \|c\|_v) \cdot (\prod_{v \in M_k} \max\{\|x_0\|_v, \ldots, \|x_n\|_v\}) \]
\[= \prod_{v \in M_k} \max\{\|x_0\|_v, \ldots, \|x_n\|_v\} \]

(b) Since \(P \in \mathbb{P}^n(k) \) we can take homogeneous coordinates such that one coordinate is equal to 1. Then \(H_k(P) \geq 1 \).
(c)
\[H_k(P) = \prod_{w \in M'_k} \max\{\|x_0\|_w, \ldots, \|x_n\|_w\} \]
\[= \prod_{v \in M_k} \prod_{w \in M'_{w,v}} \max\{\|x_0\|_w, \ldots, \|x_n\|_w\} \]
\[= \prod_{v \in M_k} \prod_{w \in M'_{w,v}} \max\{x_0^n_w, \ldots, x_n^n_w\} \]

3
Now
\[n_w = [k'_w : \mathbb{Q}_w] = [k'_w : k_v][k_v : \mathbb{Q}_v] = [k'_w : k_v]n_v \]
and there is a number theory lemma that says
\[\sum_{w \in M_k} [k'_w : k_v] = [k' : k]. \]

Using this we have
\[H_{k'}(P) = \prod_{v \in M_k} \prod_{w \in M_{k'}, w | v} \max\{\|x_0\|_v, \ldots, \|x_n\|_v\}^{[k'_w : k_v]} \]
\[= \prod_{w \in M'_k} \max\{\|x_0\|_v, \ldots, \|x_n\|_v\}^{[k' : k]} \]
\[= H_k(P)^{[k' : k]}. \]

Note 3. By the lemma(a) the previous definition is well defined.

I would like to add here, because it's as good of a time as any that the set
\[\{P \in \mathbb{P}^n(\mathbb{Q}) | H_Q(P) \leq B\} \]
is finite for any positive bound \(B\). To prove this, choose homogeneous coordinates for \(P = (x_0, \ldots, x_n)\) such that \(x_0, \ldots, x_n \in \mathbb{Z}\) and \(\gcd(x_0, \ldots, x_n) = 1\) (i.e. clear denominators). Then for each prime number \(p \in \mathbb{Z}\) there will be one coordinate with "p-adic" absolute value 1 and the rest \(\leq 1\). So for each prime the maximum will be 1. So the last contributor is the one archimedean absolute value. \(H_Q(P) = \max\{\|x_0\|, \ldots, \|x_n\|\}\) and there are only finite many integers with absolute value (the normal one) \(\leq B\).

Definition 9. The absolute (multiplicative) height on \(\mathbb{P}^n\) is the function,
\[H : \mathbb{P}^n(\mathbb{Q}) \to [1, \infty) \]
\[H(P) = H_k(P)^{1/[k : \mathbb{Q}]} \]
where \(k\) is any number field such that \(P \in \mathbb{P}^n(k)\). The absolute (logarithmic) height on \(\mathbb{P}^n\) is the function,
\[h : \mathbb{P}^n(\mathbb{Q}) \to [0, \infty) \]
\[h(P) = \log H(P) = \frac{1}{[k : \mathbb{Q}]}h_k(P) \]
We also define the height of \(x \in k\) by using the corresponding point in \([x, 1] \in \mathbb{P}^n(k)\) where
\[H(x) = H([x, 1]) \]
and we similarly define \(h(x), H_k(x), h_k(x)\).
Note 4. By the previous lemma(c) the above definition is well defined.

Proposition 10. The actions of the Galois group on $\mathbb{P}^n(\overline{\mathbb{Q}})$ leaves the height invariant. That is, let $P \in \mathbb{P}^n(\overline{\mathbb{Q}})$ and let $\sigma \in G_{\mathbb{Q}}$. Then $H(\sigma(P)) = H(P)$.

Proof. Let k/\mathbb{Q} be a number field with $P \in \mathbb{P}^n(\overline{\mathbb{Q}})$. The automorphism σ of $\overline{\mathbb{Q}}$ defines an isomorphism $\sigma : k \cong k_{\sigma}$. It likewise identifies the sets of absolute values on k and $\sigma(k)$. More precisely

$$\sigma : M_k \cong M_{\sigma(k)}, \quad v \mapsto \sigma(v),$$

where $x \in k$ and $v \in m_k$. The absolute value $\sigma(v) \in M_{\sigma(k)}$ is defined by

$$|\sigma(x)|_{\sigma(v)} = |x|_v. \quad \sigma$$

also induces an isomorphism on completions, $k_v \cong \sigma(k)v$. It follows

$$H_{\sigma(k)}(\sigma(P)) = \prod_{w \in M_{\sigma(k)}} \max\{|\sigma(x_i)|_w\} = \prod_{w \in M_{\sigma(k)}} |\sigma(x_i)|_w^{n_w} = \prod_{v \in M_k} \max\{|\sigma(x_i)|_{\sigma(v)}\}^{\sigma(v)} = \prod_{v \in M_k} \max\{|x_i|_v\}^{n_v} = \prod_{v \in M_k} \max\{|x_i|_v\} = H_k(P)$$

We also have $[k : \mathbb{Q}] = [\sigma(k) : \mathbb{Q}]$ so by taking the correct root we have $H(\sigma(P)) = H(P)$. \hfill \blacksquare

Theorem 11. For any numbers $B, D \geq 0$, the set

$$\{ P \in \mathbb{P}^n(\overline{\mathbb{Q}}) | H(P) \leq B \text{ and } |Q(P) : \mathbb{Q}| \leq D \}$$

is finite.

Proof. Choose homogeneous coordinates for $P = (x_0, ..., x_n)$ such that some coordinate equals 1. Then for some number field k such that $P \in \mathbb{P}^n(k)$ and any absolute value $v \in M_k$ and index i.

$$\max\{|x_0|_v, ..., |x_n|_v\} \geq \max\{|x_i|_v, 1\}$$

Multiplying over all v and taking the appropriate root(raise to the $1/[k : \mathbb{Q}]$.)

$$H(P) \geq H(x_i)$$

5
for all i.

Claim: For each $1 \leq d \leq D$, the set

$$\{ x \in \mathbb{Q} | H(x) \leq B \text{ and } [\mathbb{Q}(x) : \mathbb{Q}] = d \}$$

is finite.

This claim will prove our theorem because if we bound $H(P)$ we bound $H(x)$. The fact that $\mathbb{Q}(P) \supset \mathbb{Q}(x)$ says that if we can show that there are only a finite number of x’s are possible to construct P then we are finished.

Let $x \in \mathbb{Q}$ have degree d and let $k = \mathbb{Q}(x)$. Let $x_1, ..., x_d$ be the conjugates of x over \mathbb{Q} and

$$F_x(T) = \prod_{j=1}^{d} (T - x_j) = \sum_{r=0}^{d} (-1)^r s_r(x) T^{d-r}$$

be the minimal polynomial of x over \mathbb{Q} where $s_r(x)$ is the r-th symmetric polynomial. For any absolute value $v \in M_k$,

$$|s_r(x)|_v = \sum_{1 \leq i_1 \leq ... \leq i_r \leq d} |x_{i_1}...x_{i_r}|_v \leq c(v, r, d) \max_{1 \leq i_1 \leq ... \leq i_r \leq d} |x_{i_1}...x_{i_r}|_v \leq c(v, r, d) \max |x_i|^r_v.$$

Where $c(v, r, d) = \binom{d}{r} \leq 2^d$ if v is archimedean and $c(v, r, d) = 1$ otherwise.

This follows from the triangle inequality.

From this we have

$$\max\{|s_0(x)|_v, ..., |s_d(x)|_v\} \leq c(v, d) \prod_{i=1}^{d} \max\{|x_i|^v, 1\}^d.$$

where $c(v, d) = 2^d$ if v is archimedean and $c(v, d) = 1$ otherwise. Now we multiply over all $v \in M_k$ and raise to the $1/[k : \mathbb{Q}]$ power to get

$$H(s_0(x), ..., s_d(x)) \leq 2^d \prod_{i=1}^{d} H(x_i)^d.$$

But the x_i’s are conjugates, so each $H(x_i)$ is equal. Hence

$$H(s_0(x), ..., s_d(x)) = 2^d H(x_i)^d.$$

Now suppose that x is in the set

$$\{ x \in \mathbb{Q} | H(x) \leq B \text{ and } [\mathbb{Q}(x) : \mathbb{Q}] = d \}.$$
We have just proven that x is a root of a polynomial $F_x(T) \in \mathbb{Q}[T]$ whose coefficients s_0, \ldots, s_d satisfy

$$H(s_0, \ldots, s_d) \leq 2^d B^{d^2}.$$

But from earlier, $\mathbb{P}^d(\mathbb{Q})$ has only points of finite height. This means there are only finitely many possibilities for s_0, \ldots, s_d and therefore only finitely many possibilities for the polynomial $F_x(T)$, hence only finitely many choices for x.

This proves are claim, hence proves our theorem. \hfill \square

Proposition 12. Let

$$S_{n,m} : \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^N
\quad (x,y) \mapsto (x_0 y_0, x_0 y_1, \ldots, x_i y_j, \ldots, x_n y_m).$$

where $N = (n+1)(m+1) - 1$. Let H_n, H_m and H_N be hyperplanes in \mathbb{P}^n, \mathbb{P}^m and \mathbb{P}^N respectively.

(a) $S_{n,m}^*(H_N) \sim H_n \times \mathbb{P}^m + \mathbb{P}^n \times H_m \in \text{Div}(\mathbb{P}^n \times \mathbb{P}^m)$.

(b) $h(S_{n,m}(x,y)) = h(x) + h(y)$ for all $x \in \mathbb{P}^n(\mathbb{Q})$ and $y \in \mathbb{P}^m(\mathbb{Q})$.

(c) Let the map

$$\Phi_d : \mathbb{P}^n \to \mathbb{P}^N
\quad x \mapsto (M_0(x), \ldots, M_N(x))$$

be the d-uple embedding. (i.e. $N = \binom{n+d}{n+1} - 1$ and the collection $M_0(x), \ldots, M_N(x)$ is the complete collection of monomials of degree d in the variables x_0, \ldots, x_n.) Then $h(\Phi_d(x)) = dh(x)$ for all $x \in \mathbb{P}^n(\mathbb{Q})$.

Theorem 13. Let $\phi : \mathbb{P}^n \to \mathbb{P}^m$ be a rational map of degree d defined over \mathbb{Q}, so ϕ is given by a $(m+1)$-tuple $\phi = (f_0, \ldots, f_m)$ of homogeneous polynomials of degree d. Let $Z \subset \mathbb{P}^n$ be the subset of common zeros of the f_i’s. Notice that $\mathbb{P}^n \setminus Z$.

(a) We have

$$h(\phi(P)) \leq dh(P) + O(1) \text{ for all } P \in \mathbb{P}^n(\mathbb{Q}) \setminus Z.$$
(b) Let X be a closed subvariety of \mathbb{P}^n with the property that $X \cap Z = \emptyset$. (Thus ϕ defines a morphism $X \to \mathbb{P}^m$.) Then

$$h(\phi(P)) = dh(P) + O(1) \text{ for all } P \in X(\mathbb{Q})$$

Corollary 14. Let $A : \mathbb{P}^n \to \mathbb{P}^m$ be a linear map defined over \mathbb{Q}. In other words, A is given by $m + 1$ linear forms $(L_0, ..., L_m)$. Let $Z \subset \mathbb{P}^n$ be the linear subspace where $L_0, ..., L_m$ simultaneously vanish, and let $X \subset \mathbb{P}^n$ be a closed subvariety with $X \cap Z = \emptyset$. Then

$$h(A(P)) = h(P) + O(1) \text{ for all } P \in X(\mathbb{Q}).$$

Definition 15. Let $\phi : V \to \mathbb{P}^n$ be a morphism. The (absolute logarithmic) height on V relative to ϕ is the function

$$h_\phi : V(\mathbb{Q}) \to [0, \infty), \ h_\phi(P) = h(\phi(P)),$$

where $h : \mathbb{P}^n(\mathbb{Q}) \to [0, \infty)$ is the height function on projective space defined earlier.

Theorem 16. Let V be a projective variety defined over \mathbb{Q}, let $\phi : V \to \mathbb{Q}^n$ and $\psi : V \to \mathbb{Q}^m$ be morphisms, and let H and H' be hyperplanes in \mathbb{P}^n and \mathbb{P}^m respectively. Suppose that ϕ^*H and ψ^*H' are linearly equivalent. Then

$$h_\phi(P) = h_\psi(P) + O(1) \text{ for all } P \in V(\mathbb{Q}).$$

Here the $O(1)$ constant will depend on V, ϕ and ψ, but independent of P.

Theorem-Definition 17. (Weil’s Height Machine) Let k be a number field. For every smooth projective variety V/k there exists a map

$$h_V : \text{Div}(V) \to \{ \text{functions } V(k) \to \mathbb{R} \}$$

with the following properties

(a) (Normalization) Let $H \subset \mathbb{P}^n$ be a hyperplane, and let $h(P)$ be the absolute logarithmic height on \mathbb{P}^n. Then

$$h_{\mathbb{P}^n,H}(P) = h(P) + O(1) \text{ for all } P \in \mathbb{P}^n(k).$$

(b) (Functorality) Let $\phi : V \to W$ be a morphism and let $D \in \text{Div}(W)$. Then

$$h_{V,\phi^*D}(P) = h_{W,D}(\phi(P)) + O(1) \text{ for all } P \in V(k).$$

(c) (Additivity) Let $D, E \in \text{Div}(V)$. Then

$$h_{V,D+E}(P) = h_{V,D}(P) + h_{V,E}(P) + O(1) \text{ for all } P \in V(k).$$
(d) (Uniqueness) The height functions $h_{V,D}$ are determined, up to $O(1)$, by normalization, functoriality just for embeddings $\phi : V \hookrightarrow \mathbb{P}^n$, and additivity.

(e) (Linear Equivalence) Let $D, E \in \text{Div}(V)$ with D linearly equivalent to E. Then
$$h_{V,D}(P) = h_{V,E}(P) + O(1) \text{ for all } P \in V(\overline{k}).$$

(f) (Positivity) Let $D \in \text{Div}(V)$ be an effective divisor, and let B be the base locus of the linear system $|D|$. Then
$$h_{V,D}(P) \geq O(1) \text{ for all } P \in (V \setminus B)(\overline{k}).$$

(g) (Algebraic Equivalence) Let $D, E \in \text{Div}(V)$ with D ample and E algebraically equivalent to 0. Then
$$\lim_{h_{V,D}(P) \to \infty} \frac{h_{V,E}(P)}{h_{V,D}(P)} = 0 \text{ where } P \in V(\overline{k})$$

(h) (Finiteness) Let $D \in \text{Div}(V)$ be ample. Then for every finite extension k'/k and every constant B, the set
$$\{P \in V(k') | h_{V,D}(P) \leq B\}$$
is finite.

Corollary 18. Let V/k be a smooth variety defined over a number field, let $D \in \text{Div}(V)$, and let $\phi : V \to V$ be a morphism. Suppose that $\phi^*D \sim \alpha D$ for some $n \geq 1$. Then there exists a constant C such that
$$|h_{V,D}(\phi(P)) - \alpha h_{V,D}(P)| \leq C \text{ for all } P \in V(\overline{k}).$$

Note 5. The $O(1)$ here is dependent on the variety, divisor and morphism but not the points. It is possible to compute the $h_{V,D}$'s explicitly and to give bounds of $O(1)$ in terms of the defining equations the varieties, divisors and morphisms. However, it is difficult in practice to bound the $O(1)$'s.

Theorem-Definition 19. (Neron, Tate) Let V/k be a smooth variety defined over a number field, let $D \in \text{Div}(V)$, and let $\phi : V \to V$ be a morphism. Suppose that $\phi^*D \sim \alpha D$ for some $n \geq 1$. Then there exists a unique function, called the **canonical height** on V relative to ϕ and D,
$$\hat{h}_{V,\phi,D} : V(\overline{k}) \to \mathbb{R}$$
with the following two properties:

(i) $\hat{h}_{V,\phi,D}(P) = h_{V,D}(P) + O(1) \text{ for all } P \in V(\overline{k})$.

9
(ii) \(\hat{h}_{V,\phi,D}(\phi(P)) = a\hat{h}_{V,\phi,D}(P) \) for all \(P \in V(\overline{k}) \).

The canonical height depends only on the linear equivalence class of \(D \). Further, it can be computed as the limit

\[
\hat{h}_{V,\phi,D}(P) = \lim_{n \to \infty} \frac{h_{V,D}(\phi^n(P))}{\alpha^n},
\]

where \(\phi^n \) is the \(n \)-th iterate of \(\phi \).

Proof. By the previous corollary there exists a constant \(C \) such that

\[
|h_{V,D}(\phi(Q)) - ah_{V,D}(Q)| \leq C \text{ for all } Q \in V(\overline{k}).
\]

Now take any point \(P \in V(\overline{k}) \). We prove the sequence \(\{\alpha^{-n}h_{V,D}(\phi^n(P))\} \) converges by showing it is Cauchy. Take \(n \geq m \) and

\[
|\alpha^{-n}h_{V,D}(\phi^n(P)) - \alpha^{-m}h_{V,D}(\phi^m(P))| = \left| \sum_{i=m+1}^{n} \alpha^{-i}h_{V,D}(\phi^i(P)) - ah_{V,D}(\phi^{i-1}(P)) \right|
\]

by a telescoping sum. Then

\[
\leq \sum_{i=m+1}^{n} |\alpha^{-i}|h_{V,D}(\phi^i(P)) - ah_{V,D}(\phi^{i-1}(P))|
\]

by the triangle inequality. Then

\[
\leq \sum_{i=m+1}^{n} \alpha^{-i}C
\]

from above and \(Q = \phi^{i-1}P \). Then

\[
\leq (\frac{\alpha^{-m} - \alpha^{-n}}{\alpha^{-1}})C.
\]

This quantity goes to 0 as \(n > m \to \infty \), which proves the sequence is Cauchy, hence converges. So we can define the \(\hat{h}_{V,\phi,D}(P) \) to be the limit

\[
\hat{h}_{V,\phi,D}(P) = \lim_{n \to \infty} \frac{h_{V,D}(\phi^n(P))}{\alpha^n}.
\]

To verify property (i), take \(m = 0 \) and let \(n \to \infty \) in the inequality above. This gives

\[
|\hat{h}_{V,Q,D}(P) - h_{V,D}(P)| \leq \frac{C}{\alpha - 1},
\]

which gives us the desired inequality.
Property (ii) follows directly from the limit definition of canonical height.

\[
\tilde{h}_{V, \phi, D}(\phi(P)) = \lim_{n \to \infty} \frac{h_{V, D}(\phi^n(\phi(P)))}{\alpha^n} = \lim_{n \to \infty} \frac{\alpha h_{V, D}(\phi^{n+1}(P))}{\alpha^{n+1}} = \alpha \tilde{h}_{V, \phi, D}(P).
\]

What’s left to prove is uniqueness. Let \(\tilde{h} \) and \(\tilde{h}' \) be two functions with properties (i) and (ii). Let \(g = \tilde{h} - \tilde{h}' \). Then (i) implies that \(g \) is bounded, say \(|g(P)| \leq C' \) for all \(P \in V(\overline{k}) \). While (ii) says that \(g \circ \phi = \alpha^n g \) for all \(n \leq 1 \). Hence

\[
|g(P)| = \frac{g(\phi^n(P))}{\alpha^n} \leq \frac{C'}{\alpha^n}
\]

where \(\frac{C'}{\alpha^n} \to 0 \) as \(n \to 0 \). This says that \(g(P) = 0 \) for all \(P \), so \(\tilde{h} = \tilde{h}' \). \(\square \)

Definition 20. Let \(S \) be a set and let \(\phi : S \to S \) be a function, for each \(n \geq 1 \) let \(\phi^n : S \to S \) denote the \(n \)-th iterate of \(\phi \). An element \(P \in S \) is called periodic for \(\phi \) if \(\phi^n(P) = P \) for some \(n \geq 1 \). It is called preperiodic for \(\phi \) if \(\phi^n(P) \) is periodic for some \(n \geq 1 \). Equivalently, \(P \) is preperiodic if its forward orbit

\[\{ P, \phi(P), \phi^2(P), \phi^3(P), \ldots \} \]

is finite.

Proposition 21. Let \(\phi : V \to V \) be a morphism of a variety defined over a number field \(k \). Let \(D \in \text{Div}(V) \) be an ample divisor such that \(\phi^* D \sim \alpha D \) for some \(\alpha > 1 \), and let \(\tilde{h}_{V, \phi, D} \) be the associated canonical height.

(a) Let \(P \in V(\overline{k}) \). Then \(\tilde{h}_{V, \phi, D}(P) \geq 0 \), and

\[
\tilde{h}_{V, \phi, D}(P) = 0 \iff P \text{ is periodic for } \phi.
\]

(b) The Set

\[
\{ P \in V(k) \mid P \text{ is preperiodic for } \phi \}
\]

is finite.

Proof. (a) Since \(D \) is ample, we can choose a height function \(h_{V, D} \) with nonnegative values. Then by the definition, the canonical height is nonnegative.

Let \(P \in V(\overline{k}) \). Replacing \(k \) by a finite extension, we may assume that \(P \in V(k) \) and that \(D \) and \(\phi \) are defined over \(k \). Suppose that \(P \) is preperiodic for \(\phi \). Then the sequence \(\{ \phi^n P \}_{n \geq 1} \) repeats, therefore the sequence of heights \(\{ h_{V, D}(\phi^n P) \}_{n \geq 1} \) is bounded. Therefore

\[
\alpha^{-n} h_{V, D}(\phi^n P) \to 0
\]

11
as \(n \to 0 \). Therefore the canonical height \(\hat{h}_{V,\phi,D}(P) = 0 \).

Conversely, let \(\hat{h}_{V,\phi,D}(P) = 0 \). Then for any \(n \geq 1 \) we have

\[
\begin{align*}
 h_{V,D}(\phi^n P) &= \hat{h}_{V,\phi,D}(P) + O(1) \\
 &= \alpha^n \hat{h}_{V,\phi,D}(P) + O(1) \\
 &= O(1)
\end{align*}
\]

Note that all the points \(\phi^n P \) are in \(V(k) \). Therefore there is a constant \(B \) such that

\[
\{ P, \phi(P), \phi^2(P), \ldots \} \subset \{ Q \in V(k) | h_{V,D}(Q) \leq B \}
\]

because \(h_{V,D}(\phi^n P) \) is bounded. But \(D \) is ample, so there are only finitely many points in \(V(k) \) with bounded height. Hence the set \(\{ P, \phi(P), \phi^2(P), \ldots \} \) must be finite and therefore \(P \) is preperiodic for \(\phi \).