The Fundamental Theorem of Galois Theory

Phyllis J. Cassidy
Smith College
and
The City College of CUNY
pcassidy1@nyc.rr.com
The Fundamental Theorem of Galois Theory, Part I

Let K be an ordinary differential field with algebraically closed field C of constants,

and let L be a Picard-Vessiot extension of K. Write

$$L = K(\alpha), \quad \alpha \in GL(n, L),$$
$$\alpha' = A\alpha, \quad A \in M(n, K),$$
$$L^\Delta = C.$$

$Gal(L/K)$: the group of Δ-K-automorphisms of L.

Let M be a Δ-subfield of L containing K. We call M an intermediate differential field.

Then,

$$L = M(\alpha)$$
$$\alpha' = A\alpha, \quad A \in M(n, M).$$
$$L^\Delta = C.$$

So, L is a Picard-Vessiot extension of M for A, with fundamental matrix α.

Recall:

$$P = K\left[\alpha, \frac{1}{\det \alpha}\right]$$

is the Picard-Vessiot ring associated with L, and that it is Δ-simple.

The tensor product $P \otimes_K P$ is reduced.

Recall, also, the mapping c:

$$c : Gal(L/K) \to GL(n, C)$$
$$\sigma \mapsto c(\sigma) = \alpha^{-1} \sigma \alpha.$$

The image of c is a closed subgroup of $GL(n, C)$.

2
The defining ideal of \(c(G) \) is the kernel \(a \) of the surjective homomorphism
\[
C \left[X, \frac{1}{\det X} \right] \longrightarrow C \left[\gamma, \frac{1}{\det \gamma} \right], \quad X \mapsto \gamma, \quad \frac{1}{\det X} \mapsto \frac{1}{\det \gamma}
\]
where \(D = C \left[\gamma, \frac{1}{\det \gamma} \right] = (P \otimes_K P)^\Delta \).

Let \(H \) be a subgroup of \(\text{Gal}(L/K) \).

\(H \) is closed if \(c(H) \) is closed.

Let \(M \) be an intermediate differential field. \(\text{Gal}(L/M) \) is a closed subgroup of \(\text{Gal}(L/K) \).

Let \(H \) be a closed subgroup of \(\text{Gal}(L/K) \).

\[
L^H = \{ a \in L : \forall \sigma \in H \quad \sigma a = a \}.
\]
Clearly, \(L^H \) is a \(\Delta \)-subfield of \(L \) containing \(K \).

We want to prove the following theorem:

Theorem 1 Let \(\mathcal{I} = \mathcal{I}(L/K) \) be the set of intermediate differential fields, and order \(\mathcal{I} \) by inclusion.

Let \(\mathcal{G} \) be the set of closed subgroups of \(\text{Gal}(L/K) \), also ordered by inclusion.

Then, the maps
\[
\Phi : \mathcal{I} \rightarrow \mathcal{G}, \quad M \mapsto \text{Gal}(L/M)
\]
and
\[
\Psi : \mathcal{G} \rightarrow \mathcal{I}, \quad H \mapsto L^H,
\]
are inclusion reversing and inverse to one another.

Adam proved that a maximal \(\Delta \)-ideal is prime. We need a slightly more general result.

Lemma 2 Let \(R \) be a \(\Delta-K \)-algebra, and let \(f \in R, \ f \neq 0 \).

1. Let \(\mathfrak{m} \) be a radical \(\Delta \)-ideal that is a maximal \(\Delta \)-ideal of \(R \) with respect to the exclusion of all non-negative powers of \(f \). Then, \(\mathfrak{m} \) is prime.
2. If \(R \) is finitely generated over \(K \), then \((qf(R/m))^\Delta = C\).

Proof. Set \(S = R/m \). Let \(\pi : R \to S \) be the quotient homomorphism.

Since \(m \) is radical, \(S \) is reduced. Thus, the multiplicative set in \(S \) generated by \(\pi(f) \) does not contain 0.

So, \(T = S_{\pi(f)} \) is not the 0 ring.

Let \(j : S \to T \) be the canonical homomorphism. We show that \(T \) is \(\Delta \)-simple.

\(S = R/m \). Let \(\pi : R \to S \) be the quotient homomorphism. \(T = S_{\pi(f)} \)

Let \(a \) be a proper nonzero \(\Delta \)-ideal of \(T \).

Let \(a_0 = j^{-1}(a) \). \(a = j(a_0) \cdot T \neq 0 \). Thus, \(a_0 \neq (0) \).

Therefore, \(\pi^{-1}(a_0) \) properly contains \(m \).

It follows that there exists a nonnegative integer \(e \) such that \(f^e \in \pi^{-1}(a_0) \).

Therefore, \((\pi(f))^e \in a_0 \). So, \(1 \in a = j(a_0) \cdot T \). Thus, \(T \) is \(\Delta \)-simple.

Since \((0) \) is a maximal \(\Delta \)-ideal, it is prime, and, therefore \(T \) is an integral domain.

We now show that \(\ker j = (0) \). Suppose not.

Then, \(\pi^{-1}(\ker j) \) is a \(\Delta \)-ideal of \(R \) properly containing \(m \).

It follows that there exists a nonnegative integer \(e \) such that \((\pi(f))^e \in \ker j \).

Therefore, \(1 = 0 \) in \(T \).

So, \(j \) is injective, which implies that \(S \) is an integral domain, and \(m \) is prime.

This establishes the first statement.

If \(R \) is finitely generated over \(K \), then, so are \(S \) and \(T \).

Since \(T \) is \(\Delta \)-simple, \((qf(T))^\Delta = C \) (Jerry’s Talk I, Proposition 6).

Thus,

\[C \subseteq (qf(S))^\Delta \subseteq (qf(T))^\Delta = C, \]

thus, establishing the second statement.
Lemma 3 (The existence of a moving automorphism) Let \(a \in L, a \notin K \).

Then, there exists \(\sigma \in \text{Gal} (L/K) \) with \(\sigma a \neq a \).

Proof. Write \(a = \frac{b}{c} \), with \(b, c \in P \), \(c \neq 0 \). Since \(a \notin K \), \(b \) and \(c \) are linearly independent over \(K \).

We complete \(\{b, c\} \) to a basis \(\Lambda \) of \(P \) over \(K \).

Then, \(\Lambda \otimes_K \Lambda \) is a basis of \(P \otimes_K P \) over \(K \). In particular, \(b \otimes c \) and \(c \otimes b \) are linearly independent over \(K \). In particular,

\[
f = b \otimes c - c \otimes b
\]

is not zero. By Lemma 16, \(P \otimes_K P \) is reduced. Therefore, no positive integer power of \(f \) is 0.

Let \(m \) be a radical \(\Delta \)-ideal of \(P \otimes_K P \) that is maximal among the \(\Delta \)-ideals excluding all non-negative powers of \(f \).

By Lemma 3, \(m \) is prime and

\[
S = (P \otimes_K P)/m
\]

has the property that

\[
(qf (S))^\Delta = C.
\]

Let

\[
j_1 : P \to P \otimes_K P \quad j_1(x) = x \otimes_K 1
\]

\[
j_2 : P \to P \otimes_K P \quad j_2(x) = 1 \otimes_K x
\]

and

\[
\pi : P \otimes_K P \to S
\]

be the canonical \(\Delta \)-K-homomorphisms. Note that

\[
j_1(\alpha) = \alpha \otimes_K 1
\]

\[
j_2(\alpha) = (\alpha \otimes_K 1) \gamma.
\]

Let \(k = 1, 2 \). Since \(P \) is \(\Delta \)-simple, the \(\Delta \)-K-homomorphism \(\pi \circ j_k \) is injective.

\(j = 1, 2 \).
Thus, \(\det (\pi (j_k(\alpha))) = \pi (j_k(\det \alpha)) \neq 0 \), and, therefore, \(\pi (j_k(\alpha)) \in GL(n, S) \). Also,

\[
(\pi (j_k(\alpha)))' = \pi (j_k(\alpha'))
= \pi (j_k(A\alpha))
= A\pi (j_k(\alpha)).
\]

So, both \(\pi (j_1(\alpha)) \) and \(\pi (j_2(\alpha)) \) are fundamental matrices for \(A \).

As a result, there exists a matrix \(d \in GL(n, S^\Delta) = GL(n, C) \) such that

\[
\pi (j_2(\alpha)) = \pi (j_1(\alpha)) d.
\]

It follows that

\[
\pi (j_1(P)) = \pi (j_2(P)) =: R.
\]

We now replace \(S \) with \(R \).

For \(k = 1, 2 \), \(\pi \circ j_k \) is a \(\Delta \)-\(K \)-isomorphism from \(P \) onto \(R \).

Therefore, we may define

\[
\sigma : P \to P, \quad \sigma = (\pi \circ j_1)^{-1} \circ (\pi \circ j_2).
\]

Clearly, \(\sigma \) is a \(\Delta \)-\(K \)-automorphism of \(P \), and, extends uniquely to an element of \(Gal(L/K) \).

\[
\sigma \alpha = (\pi \circ j_1)^{-1}(\pi(j_2(\alpha))
= (\pi \circ j_1)^{-1}(\pi(j_1(\alpha))d)
= \alpha d.
\]

In particular, \(d = c(\sigma) \).

We want to show that for

\[
a = \frac{b}{c},
\]

\(\sigma a \neq a \). Suppose \(a - \sigma a = 0 \). Then,

\[
0 = \frac{b}{c} - \frac{\sigma b}{\sigma c}
= b\sigma c - \sigma b
= (\pi \circ j_1)(b)(\pi \circ j_1)(\sigma c) - (\pi \circ j_1)(c)(\pi \circ j_1)(\sigma b)
= (\pi \circ j_1)(b)(\pi \circ j_2)(c) - (\pi \circ j_1)(c)(\pi \circ j_2)(b)
= \pi(b \otimes_K 1)\pi(1 \otimes_K c) - \pi(c \otimes_K 1)\pi(1 \otimes_K b)
= \pi(b \otimes_K c - c \otimes_K b)
= \pi(f).
\]

This contradicts the hypothesis that \(f \notin \ker \pi \). Therefore, \(\sigma a \neq a \).
\(\mathcal{I} \) is the set of intermediate Δ-fields of \(L/K \).

\(\mathfrak{G} \) is the set of closed subgroups of \(\text{Gal}(L/K) \).

\[
\Phi : \mathcal{I} \to \mathfrak{G}, \quad M \mapsto \text{Gal}(L/M)
\]

\[
\Psi : \mathfrak{G} \to \mathcal{I}, \quad H \mapsto L^H,
\]

Lemma 4 Let \(M \in \mathcal{I} \). Then,

\[
\Psi(\Phi(M)) = M.
\]

Proof. We want to show: The fixed field of \(\text{Gal}(L/M) \) is \(M \).

Evidently,

\[
M \subseteq L^{\text{Gal}(L/M)}.
\]

By Lemma 4,

\[
L^{\text{Gal}(L/M)} \subseteq M.
\]

Thus, \(M = L^{\text{Gal}(L/M)} \). ■

\[
\sigma : P \otimes_K P \to P, \quad a \otimes_K b \mapsto a\sigma b.
\]

\[
\overline{\sigma \gamma} = \overline{\sigma}(\alpha^{-1} \otimes_K \alpha) = \alpha^{-1} \sigma \alpha = c(\sigma).
\]

Let \(a \) be the defining ideal in \(K \left[X, \frac{1}{\det X} \right] \) of \(c(\text{Gal}(L/K)) \).

Let \(H \subseteq \text{Gal}(L/K) \) be a closed subgroup.

\(\exists \) a radical ideal \(b \supseteq a \) in \(C \left[X, \frac{1}{\det X} \right] \) such that

\[
\sigma \in H \iff F(c(\sigma)) = 0 \quad \forall F \in b.
\]
Lemma 5 If $L^H = K$, then, $b = a$, i.e., $H = \text{Gal}(L/K)$.

Proof. Suppose $b \neq a$. Let $F \in b$, $F \notin a$. $F(\gamma) \in C\left[\gamma, \frac{1}{\det \gamma}\right] \subseteq P \otimes_K P$, and $F(\gamma) \neq 0$.

However, $\forall \sigma \in H$, since F has coefficients in the fixed field K of H,

$$\sigma(F(\gamma)) = F(\sigma \gamma) = F(\epsilon(\sigma)) = 0.$$

$F(\gamma) \in C\left[\gamma, \frac{1}{\det \gamma}\right] \subseteq P \otimes_K P$.

$F(\gamma) \neq 0$, but, $\forall \sigma \in H$, $\sigma(F(\gamma)) = 0$.

Let $w \in P \otimes_K P$. Write

$$w = \sum_{i=1}^{d} a_i \otimes_K b_i, \quad a_i, b_i \in P,$$

with d smallest. Choose w such that

1. $w \neq 0$, but, $\forall \sigma \in H$, $\sigma w = 0$.

2. No element of $P \otimes_K P$ satisfying 1 has a representation with less than d terms as a sum of tensors.

In particular, a_1, \ldots, a_d are linearly independent over K, as are b_1, \ldots, b_d.

Since $P \otimes_K 1$ and $1 \otimes_K P$ are linearly disjoint over K, it follows that

$$1 \otimes_K b_1, \ldots, 1 \otimes_K b_d$$

are linearly independent over $P \otimes_K 1$, and

$$a_1 \otimes_K 1, \ldots, a_d \otimes_K 1$$

are linearly independent over $1 \otimes_K P$.

8
Let $\tau \in H$, and set

$$w_\tau = \sum_{i=1}^{d} \tau a_i \otimes_K b_i.$$

We claim that $w_\tau \neq 0$.

Suppose $w_\tau = 0$. Since $1 \otimes_K b_1, \ldots, 1 \otimes_K b_d$ are linearly independent over $P \otimes_K 1$,

$$0 = \tau a_1 = \cdots = \tau a_d.$$

Since τ is injective, $a_1 = \cdots = a_d = 0$.

So, $w_\tau \neq 0$. We now show that $\forall \sigma \in H$, $\sigma w_\tau = 0$.

$$\begin{align*}
\sigma w_\tau &= \sum_{i=1}^{d} \tau a_i \sigma b_i \\
&= \tau \left(\sum_{i=1}^{d} a_i \tau^{-1} \sigma b_i \right) \\
&= \tau \left(\tau^{-1} \sigma (w) \right) \\
&= \tau (0) \\
&= 0,
\end{align*}$$

since $\tau^{-1} \sigma \in H$.

Let
\[
z_\tau = (a_d \otimes_K 1) w_\tau - (\tau a_d \otimes_K 1) w
\]
\[
= (a_d \otimes_K 1) \sum_{i=1}^{d} \tau a_i \otimes_K b_i - (\tau a_d \otimes_K 1) \sum_{i=1}^{d} a_i \otimes_K b_i
\]
\[
= \sum_{i=1}^{d} (a_d \tau a_i - \tau a_d a_i) \otimes_K b_i
\]
\[
= \sum_{i=1}^{d-1} (a_d \tau a_i - \tau a_d a_i) \otimes_K b_i.
\]
If \(z_\tau = 0\), then, for \(i = 1, \ldots, d-1\), \(a_d \tau a_i - \tau a_d a_i = 0\).

Suppose \(z_\tau = 0\).

For \(i = 1, \ldots, d-1\), \(a_d \tau a_i - \tau a_d a_i = 0\). Since \(a_d \neq 0\), we have
\[
\forall \tau \in H, \quad \tau \left(\frac{a_i}{a_d} \right) = \frac{a_i}{a_d}.
\]

Therefore, since the fixed field of \(H\) is \(K\), there exists \(f \in K\) such that
\[
a_d = fa_i.
\]

This contradicts the linear independence over \(K\) of \(a_1, \ldots, a_d\).

So, \(z_\tau \neq 0\). We now show that \(\forall \sigma \in H, \sigma z_\tau = 0\).

\[
\sigma z_\tau = (a_d \otimes_K 1) \sigma w_\tau - (\tau a_d \otimes_K 1) \sigma w
\]
\[
= (a_d \otimes_K 1) \cdot 0 - (\tau a_d \otimes_K 1) \cdot 0
\]
\[
= 0.
\]

This contradicts the choice of \(w\), and proves the lemma. ■

Lemma 6 If \(H \in \mathfrak{G}\), then, \(\Phi(\Psi(H)) = H\).

Proof. \(\Phi(\Psi(H)) = \text{Gal}(L/L^H)\). By Lemma 6, \(\text{Gal}(L/L^H) = H\). ■

This ends the proof of the fundamental theorem of Galois theory, Part I.
Corollary 7 Let H be a subgroup of $\text{Gal}(L/K)$ such that the fixed field of H is K. Then, H is dense in $\text{Gal}(L/K)$.

Remark 8 In particular, $A \in M(n, \mathbb{C}(x))$, and, if the differential equation

$$y' = Ay$$

is Fuchsian, then, its monodromy group is dense in $\text{Gal}(L/K)$.

Theorem 9 (The Fundamental Theorem of Galois Theory, Part II) Let L be a Picard-Vessiot extension of K.

1. Let $H \in \mathcal{G}$. Then, H is a normal subgroup of $G = \text{Gal}(L/K)$ if and only if $\forall \sigma \in G$, $\sigma(L^H) \subseteq L^H$. If H is a normal subgroup of G, the restriction map

$$G \to \text{Gal}(L^H/K) \quad \sigma \mapsto \sigma | L^H,$$

is surjective, and has kernel H. Moreover, L^H is a Picard-Vessiot extension of K, and $\text{Gal}(L^H/K)$ is isomorphic to the quotient group G/H.

2. Let G^0 be the identity component of G. Then, L^{G^0} is a finite Galois extension of K, and $\text{Gal}(L^{G^0}/K) \cong G/G^0$ is its algebraic Galois group.

Corollary 10 $\text{Gal}(L/K)$ is connected if and only if K is algebraically closed in L.
