Differential Groups and Differential Relations

Michael F. Singer
Department of Mathematics
North Carolina State University
Raleigh, NC 27695-8205 USA

http://www.math.ncsu.edu/~singer
Theorem: (Hölder, 1887) The Gamma function $\Gamma(x + 1) = x\Gamma(x)$ satisfies no polynomial differential equation.

Goal: Prove this using differential algebraic groups and generalize

Ex. If $y_1(x)$ and $y_2(x)$ are lin. indep. solutions of

$$y(x + 2) - xy(x + 1) + y(x) = 0$$

then $y_1(x)$, $y_1(x + 1)$ and $y_2(x)$ satisfy no polynomial differential equation.
• To study an object \mathcal{X}, study its group of symmetries \mathcal{G}

• The size of \mathcal{G}, measures the size of \mathcal{X}

• The relations defining \mathcal{G} give us the relations on \mathcal{X}.
• Galois Theory of Polynomial Equations
• Galois Theory of Difference Equations
• Linear Differential Algebraic Groups
• Differential Galois Theory of Difference Equations
• Differential Relations Among Solutions of Linear Difference Equations
• Final Comments
Galois Theory of Polynomial Equations

\[f(y) = 0, \ f \in k[y] \text{ of degree } n \text{ and irreducible} \]

Galois group = the group of transformations of the roots of \(f \) that preserve all algebraic relations among them.

More formally:

\text{Splitting Ring: } K = k[y_1, \ldots, y_n, (\prod_{i<j}(y_i - y_j))^{-1}]/M = k[\alpha_1, \ldots, \alpha_n], \quad M \text{ a max ideal containing } (f(y_1), \ldots, f(y_n))

\text{Note: } K \text{ is a field and all such are isomorphic.}

Galois group = \(\text{Gal}(K/k) = \{ \sigma : K \to K \mid \sigma \text{ is a } k\text{-autom.} \} \)
\[K = k[\alpha_1, \ldots, \alpha_n] \]
\[\alpha = (\alpha_1, \ldots, \alpha_n), \quad V = \{ \sigma(\alpha) \mid \sigma \in \text{Gal}(K/k) \} \subset K^n \]

- \(V \) is a variety, inv. under \(\text{Gal}(\bar{k}/k) \) \(\Rightarrow \) \(V \) defined over \(k \)

\(\text{Gal}(K/k) \) acts trans. and freely on \(V \) \(\Rightarrow \) \(V \) is a \(\text{Gal}(K/k) \)-torsor

- \(K = k[\alpha_1, \ldots, \alpha_n] = \) coordinate ring of \(V \)

\[K^{\text{Gal}(K/k)} = k \quad |\text{Gal}(K/k)| = |V| = \dim_k K \]

The size of \(\text{Gal}(K/k) \) measures relations among the roots.

Ex. \(|\text{Gal}(K/k)| = \deg(f) \Rightarrow \) all roots are expressed in terms of one.
Galois Theory of Difference Equations

k - field, σ - an automorphism \[\text{Ex. } \mathbb{C}(x), \; \sigma(x) = x + 1, \; \sigma(x) = qx \]

Difference Equation: \[\sigma(Y) = AY \; A \in \text{GL}_n(k) \]

Splitting Ring: \[k[Y, \frac{1}{\det(Y)}], \; Y = (y_{i,j}) \text{ indeterminates} \; , \sigma(Y) = AY, \]
\[M = \text{max } \sigma\text{-ideal} \]
\[R = k[Y, \frac{1}{\det(Y)}]/M = k[Z, \frac{1}{\det(Z)}] = \sigma\text{-Picard-Vessiot Ring} \]

- M is radical \Rightarrow R is reduced

- If $C = k^\sigma = \{ c \in k \mid \sigma c = c \}$ is alg closed \Rightarrow R is unique and $R^\sigma = C$

Ex.

\[k = \mathbb{C} \; \sigma(y) = -y \]
\[R = \mathbb{C}[y, \frac{1}{y}]/(y^2 - 1) \]
σ-Galois Group: $\text{Gal}_\sigma(R/k) = \{ \phi : R \to R \mid \phi \text{ is a } \sigma \text{ } k\text{-automorphism} \}$

Ex.

$$k = \mathbb{C} \quad \sigma(y) = -y \Rightarrow R = \mathbb{C}[y, \frac{1}{y}]/(y^2 - 1)$$

$$\text{Gal}_\sigma(R/k) = \mathbb{Z}/2\mathbb{Z}$$

Ex.

$$k = \mathbb{C}(x), \sigma(x) = x + 1$$

$$\sigma^2 y - x\sigma y + y = 0 \Rightarrow \sigma Y = \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} Y$$

$$R = k[Y, \frac{1}{\det(Y)}]/(\det(Y) - 1), \text{ Gal}_\sigma = \text{SL}_2(\mathbb{C})$$

Ex.

$$\sigma(y) - y = f, \ f \in k \Leftrightarrow \sigma \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & f \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$$

$$\phi \in \text{Gal}_\sigma \Rightarrow \phi(y) = y + c_\phi, c_\phi \in C$$

$$\text{Gal}_\sigma = (C, +) \text{ or } \{0\}$$
\begin{itemize}
 \item $\phi \in \text{Gal}_\sigma$, $\sigma(Z) = AZ \Rightarrow \phi(Z) = Z[\phi]$, $[\phi] \in \text{GL}_n(C)$
 \begin{align*}
 \text{Gal}_\sigma \hookrightarrow \text{GL}_n(C) & \text{ and the image is Zariski closed} \\
 \text{Gal}_\sigma = G(C), G \text{ a lin. alg. gp. }/C.
 \end{align*}
 \item $R = \text{coord. ring of a } G\text{-torsor}$
 \begin{align*}
 R^{\text{Gal}_\sigma} = k \\
 \dim(G) = \text{Krull dim}_k R \ (\simeq \text{trans. deg. of quotient field})
 \end{align*}
\end{itemize}
The size of $\text{Gal}(K/k)$ measures algebraic relations among the solutions.

Ex.

$$\sigma^2y - x \sigma y + y = 0 \Rightarrow \sigma Y = \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} Y$$

$\text{Gal}_\sigma = \text{SL}_2(\mathbb{C})$

$$3 = \dim \text{SL}_2(\mathbb{C}) = \text{tr. deg}_k k(y_1, y_2, \sigma(y_1), \sigma(y_2))$$

$\Rightarrow y_1, y_2, \sigma(y_1)$ alg. indep. over k
Ex. \(f_1, \ldots, f_n \in k, \ k \) a difference field w. alg. closed const.
\[
\sigma(y_1) - y_1 = f_1 \\
\vdots \\
\sigma(y_n) - y_n = f_n
\]
Picard-Vessiot ring = \(k[y_1, \ldots, y_n] \)

Prop. \(y_1, \ldots, y_n \) alg. dep. over \(k \)

if and only if

\(\exists g \in k \) and a const coeff. linear form \(L \) s.t. \(L(y_1, \ldots, y_n) = g \)

(equiv., \(c_1 f_1 + \ldots + c_n f_n = \sigma(g) - g \))

Proof. \(\text{Gal}_\sigma \subset (C, +)^n \).

\(\Rightarrow \) Alg. dependent \(\Rightarrow \ \text{Gal}_\sigma \subsetneq (C, +)^n \)

\(\Rightarrow \ \exists L \) s.t. \(\text{Gal}_\sigma \subset \{(c_1, \ldots, c_n) \mid L(c_1, \ldots, c_n) = 0\} \)

\(\phi \in \text{Gal}_\sigma, \ \phi(L(y_1, \ldots, y_n)) = L(y_1 + c_1, \ldots, y_n + c_n) \)

\(= L(y_1, \ldots, y_n) + L(c_1, \ldots, c_n) = L(y_1, \ldots, y_n) \)

So, \(L(y_1, \ldots, y_n) = g \in k. \)

Ex. \(y(x + 1) - y(x) = \frac{1}{x} \Rightarrow y(x) \) is not alg. over \(\mathbb{C}(x) \).
Linear Differential Algebraic Groups

P. Cassidy-“Differential Algebraic Groups” Am. J. Math. 94(1972),891-954
+ 5 more papers, book by Kolchin, papers by Buium, Pillay et al., Ovchinnikov

$(k, \delta) = \text{a differentially closed differential field}$

Definition: A subgroup $G \subset GL_n(k) \subset k^{n^2}$ is a **linear differential algebraic group** if it is Kolchin-closed in $GL_n(k)$, that is, G is the set of zeros in $GL_n(k)$ of a collection of differential polynomials in n^2 variables.

Ex. Any linear algebraic group defined over k, that is, a subgroup of $GL_n(k)$ defined by (algebraic) polynomials, e.g., $GL_n(k), SL_n(k)$

Ex. Let $C = \ker \delta$ and let $G(k)$ be a linear algebraic group defined over k. Then $G(C)$ is a linear **differential** algebraic group (just add $\{\delta y_{i,j} = 0\}_{i,j=1}^n$ to the defining equations!)
Ex. Differential subgroups of $G_a(k) = (k, +) = \left\{ \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \right\} \mid z \in k$}

The linear differential subgroups are all of the form

$$G^L_a = \{ z \in k \mid L(z) = 0 \}$$

where L is a linear homogeneous differential polynomial.

For example, if $m = 1$,

$$G^\delta_a = \{ z \in k \mid \delta(z) = 0 \} = G_a(C)$$

Ex. Differential subgroups of $G^n_a(k) = (k^n, +)$

The linear differential subgroups are all of the form

$$G^L_a = \{ (z_1, \ldots, z_n) \in k^n \mid L(z_1, \ldots, z_n) = 0 \}$$

where L is a linear homogeneous differential polynomial.
Ex. \(H\) a Zariski-dense proper differential subgroup of \(\text{SL}_n(k)\)

\[\Rightarrow \exists g \in \text{SL}_n(k)\text{ such that } gHg^{-1} = \text{SL}_n(C), \ C = \ker(\delta).\]

In general if \(H\) a Zariski-dense proper differential subgroup of \(G \subset \text{GL}_n(k)\), a simple algebraic group defined over \(C\)

\[\Rightarrow \exists g \in \text{GL}_n(k)\text{ such that } gHg^{-1} = G(C), \ C = \ker(\delta).\]
Differential Galois Theory of Difference Equations

\(k \) - field, \(\sigma \) - an automorphism \(\delta \) - a derivation s.t. \(\sigma \delta = \delta \sigma \)

Ex. \(\mathbb{C}(x) \) : \(\sigma(x) = x + 1, \delta = \frac{d}{dx} \)
\(\sigma(x) = qx, \delta = x \frac{d}{dx} \)
\(\mathbb{C}(x,t) \) : \(\sigma(x) = x + 1, \delta = \frac{\partial}{\partial t} \)

Difference Equation: \(\sigma(Y) = AY, A \in \text{GL}_n(k) \)

Splitting Ring: \(k\{Y, \frac{1}{\det(Y)}\} = k[Y, \delta Y, \delta^2 Y, \ldots, \frac{1}{\det(Y)}] \)

\(Y = (y_{i,j}) \text{ differential indeterminates} \)
\(\sigma(Y) = AY, \sigma(\delta Y) = A(\delta Y) + (\delta A)Y, \ldots \)

\(M = \max \sigma \delta \)-ideal

\(R = \frac{k\{Y, \frac{1}{\det(Y)}\}}{M} = k\{Z, \frac{1}{\det(Z)}\} = \sigma \delta \)-Picard-Vessiot Ring
k - $\sigma\delta$ field

$\sigma(Y) = AY, \ A \in \text{GL}_n(k)$

$R = k\{Z, \frac{1}{\det(Z)}\}$ - $\sigma\delta$-Picard-Vessiot ring

- R is reduced

- If $C = k^\sigma = \{c \in k \mid \sigma c = c\}$ is differentially closed
 $\Rightarrow R$ is unique and $R^\sigma = C$
\(\sigma\delta\text{-Galois Group: } \text{Gal}_{\sigma\delta}(R/k) = \{ \phi : R \to R \mid \phi \text{ is a } \sigma\delta k\text{-automorphism} \}\)

- \(\phi \in \text{Gal}_{\sigma\delta} \Rightarrow \phi(Z) = Z[\phi], \ [\phi] \in \text{GL}_n(C)\)
 - \(\text{Gal}_{\sigma\delta} \hookrightarrow \text{GL}_n(C)\) and the image is Kolchin closed
 - \(\text{Gal}_{\sigma\delta} = G(C), G \text{ a lin. differential alg. gp. /}C\).

- \(\text{Gal}_{\sigma\delta}\) is Zariski dense in \(\text{Gal}_\sigma\)

- \(R = \text{coord. ring of a } G\text{-torsor}\)
 - \(R^{\text{Gal}_{\sigma\delta}} = k\)
 - Assume \(G\) connected. Then \(\text{diff. dim}_C(G) = \text{diff. tr. deg}_k F\)
 where \(F\) is the quotient field of \(R\).
Ex.

\[k = \mathbb{C} \sigma(y) = -y \Rightarrow R = k[y, \frac{1}{y}]/(y^2 - 1) \]

\[\text{Gal}_{\sigma \delta}(R/k) = \mathbb{Z}/2\mathbb{Z} \]

Ex.

\[\sigma(y) - y = f, \ f \in k, \ \text{Gal}_{\sigma \delta} \subset \mathbb{G}_a \]

\[\Rightarrow \text{Gal}_{\sigma \delta} = \{ c \in R^\sigma \mid L(c) = 0 \} \text{ for some } L \in R^\sigma[\delta]. \]

Ex.

\[k = \mathbb{C}(x), \sigma(x) = x + 1, \ \delta(x) = 1 \]

\[\sigma^2 y - xy + y = 0 \Rightarrow \sigma Y = \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} Y \]

Will show: \[R = k\{Y, \frac{1}{\det(Y)}\}/\{\det(Y) - 1\} \]

\[\text{Gal}_{\delta \sigma} = \text{SL}_2(\mathbb{C}) \]
Differential Relations Among Solutions of Linear Difference Equations

Groups Measure Relations

$k - \sigma \delta$ - field, $C = k^\sigma$ differentially closed.

Differential subgroups of $G^n_a(k) = (k^n, +)$ are all of the form

$$G^L_a = \{(z_1, \ldots, z_n) \in k^n \mid L(z_1, \ldots, z_n) = 0\}$$

where L is a linear homogeneous differential polynomial.

\[
\Downarrow
\]

Proposition. Let R be a $\sigma \delta$-Picard-Vessiot extension of k containing z_1, \ldots, z_n such that

$$\sigma(z_i) - z_i = f_i, \quad i = 1, \ldots, n.$$

with $f_i \in k$. Then z_1, \ldots, z_n are differentially dependent over k if and only if there is a homogeneous linear differential polynomial L over C such that

$$L(z_1, \ldots, z_n) = g \quad g \in k$$

Equivalently, $L(f_1, \ldots, f_n) = \sigma(g) - g$.

18
Corollary. Let $f_1, \ldots, f_n \in \mathbb{C}(x)$, $\sigma(x) = x + 1$, $\delta = \frac{d}{dx}$ and let z_1, \ldots, z_n satisfy

$$\sigma(z_i) - z_i = f_i, \ i = 1, \ldots, n.$$

Then z_1, \ldots, z_n are differentially dependent over $\mathcal{F}(x)$ (\mathcal{F} is the field of 1-periodic functions) if and only if there is a homogeneous linear differential polynomial L over \mathbb{C} such that

$$L(z_1, \ldots, z_n) = g \quad g \in \mathbb{C}(x)$$

Equivalently, $L(f_1, \ldots, f_n) = \sigma(g) - g$.

- Similar result for q-difference equations. Also for $\sigma y_i = f_i y_i$

- C. Hardouin proved (using difference Galois theory) similar result for $\sigma y_i = f_i y_i$ and gave criterion in terms of divisors of the f_i. Simplified by M. van der Put
The Gamma function is hypertranscendental.

- \(z(x) = \frac{\Gamma'(x)}{\Gamma(x)} \) satisfies \(\sigma(z) - z = \frac{1}{x} \).

- If \(z(x) \) satisfies a polynomial differential equation, then
 \[
 \exists L \in \mathbb{C}[\frac{d}{dx}], g(x) \in \mathbb{C}(x) \text{ s.t. } L\left(\frac{1}{x}\right) = g(x + 1) - g(x)
 \]

- \(L\left(\frac{1}{x}\right) \) has a pole \(\Rightarrow \) \(g(x) \) has a pole.

- If \(g(x) \) has a pole then \(g(x + 1) - g(x) \) has at least two poles but \(L\left(\frac{1}{x}\right) \) has exactly one pole.
If H a Zariski-dense proper differential subgroup of $G \subset \text{GL}_n(k)$, a simple algebraic group defined over C

$\Rightarrow \exists g \in \text{GL}_n(k)$ such that $gHg^{-1} = G(C)$, $C = \ker(\delta)$.

\Downarrow

Proposition. Let $A \in \text{GL}_n(k)$ and assume that the σ-Galois group of $\sigma(Y) = AY$ is a simple (noncommutative) linear algebraic group G of dimension t. Let $R = k\{Z, \frac{1}{\det Z}\}$ be the $\sigma\delta$-PV ring.

The differential trans. deg. of R over k is less than t

\Uparrow

$\exists B \in \text{gl}_n(k)$ s.t. $\sigma(B) = ABA^{-1} + \delta(A)A^{-1}$

(in which case, $(\delta Z - BZ)Z^{-1} \in \text{gl}_n(k^\sigma)$)
Ex.

\[k = \mathbb{C}(x), \sigma(x) = x + 1 \]

\[\sigma^2 y - x \sigma y + y = 0 \Rightarrow \sigma Y = \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} Y \]

\[R = k[Y, \frac{1}{\det(Y)}]/(\det(Y) - 1), \quad \text{Gal}_\sigma = \text{SL}_2(\mathbb{C}) \]

\[y_1(x), y_2(x) \text{ linearly independent solutions.} \]

\[y_1(x), y_2(x), y_1(x + 1) \text{ are differentially dependent over } \mathbb{C}(x) \]

\[\uparrow \]

\[\exists \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{gl}_2(\mathbb{C}(x)) \text{ s.t.} \]

\[\sigma \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix}' \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix}^{-1} + \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & x \end{pmatrix}^{-1} \]

This 4th order inhomogeneous equation has no such solutions

\[\Rightarrow y_1(x), y_2(x), y_1(x + 1) \text{ are differentially independent over } \mathbb{C}(x) \]
Final Comments

- q-hypergeometric functions $2\phi_1(a, b; c; x)$ satisfy
 \[
 \phi(q^2x) - \frac{(a - b)x - (1 + c/q)}{abx - c/q} \phi(qx) + \frac{x - 1}{abx - c/q} \phi(x) = 0
 \]

 Classify differential dependence among these. (J. Roques has calculated the (tannakian) Galois groups.)

- Nonlinear equations
- Isomonodromic deformations of difference equations
- Inverse problem
- Relation to model theory of $\sigma \delta$-fields (R. Bustamante)